195
Views
4
CrossRef citations to date
0
Altmetric
Articles

Molecular docking, design, synthesis and biological evaluation of novel 2,3-aryl-thiazolidin-4-ones as potent NNRTIs

, , , , , , , & show all
Pages 697-714 | Received 05 Jul 2019, Accepted 05 Aug 2019, Published online: 23 Sep 2019

References

  • J.M. Tronchet and M. Seman, Nonnucleoside inhibitors of HIV-1 reverse transcriptase: From the biology of reverse transcription to molecular design, Curr. Top. Med. Chem. 3 (2003), pp. 1496–1511. doi:10.2174/1568026033451754.
  • S. Martins, M.J. Ramos, and P.A. Fernandes, The current status of the NNRTI family of antiretrovirals used in the HAART regime against HIV infection, Curr. Med. Chem. 15 (2008), pp. 1083–1095. doi:10.2174/092986708784221467.
  • L.R. Boone, Next-generation HIV-1 non-nucleoside reverse transcriptase inhibitors, Curr. Opin. Investig. Drugs 7 (2006), pp. 128–135.
  • Z.K. Sweeney and K. Klumpp, Improving non-nucleoside reverse transcriptase inhibitors for first-line treatment of HIV infection: The development pipeline and recent clinical data, Curr. Opin. Drug Discov. Dev. 11 (2008), pp. 458–470.
  • K. Inthajak, P. Toochinda, and L. Lawtrakul, Application of molecular docking and PSO–SVR intelligent approaches in antimalarial activity prediction of enantiomeric cycloguanil analogues, SAR QSAR Environ. Res. 29 (2018), pp. 957–974. doi:10.1080/1062936X.2018.1536678.
  • S. Forli, R. Huey, M.E. Pique, M. Sanner, D.S. Goodsell, and A.J. Olson, Computational protein-ligand docking and virtual drug screening with the autodock suite, Nat. Protoc. 11 (2016), pp. 905–919. doi:10.1038/nprot.2016.051.
  • R. Li, Y. Du, and J. Shen, Molecular modelling studies on cinnoline-based BTK inhibitors using docking and structure-based 3D-QSAR, SAR QSAR Environ. Res. 29 (2018), pp. 847–873. doi:10.1080/1062936X.2018.1518927.
  • S.S. Bhunia, S. Singh, S. Saxena, and A.K. Saxena, Pharmacophore modeling, docking and molecular dynamics studies on caspase-3 activators binding at β-tubulin site, Curr. Comput.-Aided Drug Design 11 (2015), pp. 72–83. doi:10.2174/1573409911666150701103342.
  • A.A. Elfiky and A.M. Ismail, Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures, SAR QSAR Environ. Res. 29 (2018), pp. 409–418. doi:10.1080/1062936X.2018.1454981.
  • D.K. Behera, P.M. Behera, L. Acharya, and A. Dixit, Pharmacophore modelling, virtual screening and molecular docking studies on PLD1 inhibitors, SAR QSAR Environ. Res. 28 (2017), pp. 957–971. doi:10.1080/1062936X.2017.1393774.
  • E.E. Ph, T.D. Lazari, S. Dirnali, and A. Micha, Docking assisted prediction and biological evaluation of sideritis L. Components with ptp1b inhibitory action and probable anti-diabetic properties, Curr. Top. Med. Chem. 19 (2019), pp. 383–392. doi:10.2174/1568026619666190219104430.
  • O. Kouatly, P. Eleftheriou, A. Petrou, D. Hadjipavlou-Litina, and A. Geronikaki, Docking assisted design of novel 4-adamantanyl-2-thiazolylimino-5-arylidene-4-thiazolidinones as potent NSAIDs, SAR QSAR Environ. Res. 29 (2018), pp. 83–101. doi:10.1080/1062936X.2017.1410220.
  • M. Fesatidou, P. Zagaliotis, C. Camoutsis, A. Petrou, P. Eleftheriou, C. Tratrat, M. Haroun, A. Geronikaki, and M. Soković, 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation, Bioorg. Med. Chem. 26 (2018), pp. 4664–4676. doi:10.1016/j.bmc.2018.08.004.
  • A.M. Vijesh, A.M. Isloor, S. Telkar, T. Arulmoli, and H.-K. Fune, Molecular docking studies of some new imidazole derivatives for antimicrobial properties, Arab. J. Chem. 6 (2013), pp. 197–204. doi:10.1016/j.arabjc.2011.10.007.
  • L.G. Ferreia, R.N. Dos Santos, G. Oliva, and A.A. Andricopulo, Molecular docking and structure-based drug design strategies, Molecules 20 (2015), pp. 13384–13421. doi:10.3390/molecules200713384.
  • D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin, and V.V. Poroikov, Prediction of the biological activity spectra of organic compounds using the PASS online web resource, Chem. Heter. Comp. 50 (2014), pp. 444–457. doi:10.1007/s10593-014-1496-1.
  • D.A. Filimonov, D.S. Druzhilovskiy, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, A.V. Dmitriev, P.V. Pogodin, and V.V. Poroikov, Computer-aided prediction of biological activity spectra for chemical compounds: Opportunities and limitations, Biomed. Chem. 1 (2018), pp. e00004. doi:10.18097/bmcrm00004
  • Available at https://www.rcsb.org/structure/3MEC.
  • Available at http://www.opentox.org/toxicity-prediction.
  • Available at https://apps.ideaconsult.net/ToxPredict.
  • O. Tcheremenskaia, R. Benigni, I. Nikolova, N. Jeliazkova, S.E. Escher, M. Batke, T. Baier, V. Poroikov, A. Lagunin, M. Rautenberg, and B. Hardy, OpenTox predictive toxicology framework: Toxicological ontology and semantic media wiki-based OpenToxipedia, J. Biomed. Semantics 3 (2012), pp. S7. doi:10.1186/2041-1480-3-S1-S7.
  • Protox, Available at http://tox.charite.de/tox/.
  • M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig, and R. Preissner, ProTox: A web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Res. 42 Web server issue (2014), pp. W53–W58. doi:10.1093/nar/gku401
  • P. Banerjee, A.O. Eckert, A.K. Schrey, and R. Preissner, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018), pp. W257–W263. doi:10.1093/nar/gky318.
  • E. Pitta, E. Crespan, A. Geronikaki, G. Maga, and A. Samue, Novel thiazolidinone derivatives with an uncommon mechanism of inhibition towards HIV-1 reverse transcriptase, Lett. Drug Discov. Design 7 (2010), pp. 228–234. doi:10.2174/157018010790945869.
  • E. De Clercq, Where rilpivirine meets with tenofovir, the start of a new anti-HIV drug combination era, Biochem. Pharmacol. 84 (2012), pp. 241–248. doi:10.1016/j.bcp.2012.03.024.
  • G. Kumari and P.K. Singh, Highly active antiretroviral therapy for treatment of HIV/AIDS patients: Current status and future prospects and the Indian scenario, HIV AIDS Rev. 11 (2012), pp. 5–14. doi:10.1016/j.hivar.2012.02.003.
  • D. Filimonov, V. Poroikov, Y. Borodina, and T. Gloriozova, Chemical similarity assessment through multilevel neighbourhoods of atomic definition and comparison with other descriptors, Chem. Inf. Comput. Sci. 39 (1999), pp. 666–670. doi:10.1021/ci980335o.
  • V. Poroikov, D. Filimonov, W. Ihlenfeld, T. Gloriozova, A. Lagunin, Y. Borodina, A. Stepanchikova, and M. Nicklaus, PASS biological activity spectrum predictions in the enhanced open NCI database browser, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 228–236. doi:10.1021/ci020048r.
  • D. Prajapati, R. Ramajayam, M. Ram Yadar, and R. Giridhar, The search for potent, small molecule NNRTIs: A review, Biorg. Med. Chem. 17 (2009), pp. 5744–5762. doi:10.1016/j.bmc.2009.06.060.
  • V. Berezovskaya, Classification of sybstances with respect to acute toxicity for parenteral administration, Pharm. Chem. J. 33 (2003), pp. 32–34. doi:10.1023/A:1024586630954.
  • R. Kaslow, M. Carrington, R. Apple, L. Park, A. Muñoz, A. Saah, J. Goedert, C. Winkler, S. O’Brien, C. Rinaldo, R. Detels, W. Blattner, J. Phair, H. Erlich, and D. Mann, Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection, Nat. Med. 2 (1996), pp. 405–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.