131
Views
1
CrossRef citations to date
0
Altmetric
Articles

Short peptide with an inhibitory activity on the NMDA/Gly-induced currents

ORCID Icon, , , ORCID Icon, &
Pages 683-695 | Received 21 Jun 2019, Accepted 06 Aug 2019, Published online: 05 Sep 2019

References

  • https://www.who.int/en/news-room/fact-sheets/detail/depression
  • J.F. Greden, The burden of disease for treatment-resistant depression, J. Clin. Psychiat. 62 (2001), pp. 26–31.
  • C.B. Nemeroff, Prevalence and management of treatment-resistant depression, J. Clin. Psychiat. 68 (2007), pp. 17–25.
  • Y. Sattar, J. Wilson, A.M. Khan, M. Adnan, D. Azzopardi Larios, S. Shrestha, Q. Rahman, Z. Mansuri, A. Hassan, N.B. Patel, N. Tariq, S. Latchana, S.C. Lopez Pantoja, S. Vargas, N.A. Shaikh, F. Syed, D. Mittal, and F. Rumesa, A review of the mechanism of antagonism of N-methyl-D-aspartate receptor by ketamine in treatment-resistant depression, Cureus 10 (2018), pp. e2652.
  • B. Moghaddam, B. Adams, A. Verma, and D. Daly, Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex, J. Neurosci. 17 (1997), pp. 2921–2927. doi:10.1523/JNEUROSCI.17-08-02921.1997.
  • D. Stroebel, D.L. Buhl, J.D. Knafels, P.K. Chanda, M. Green, S. Sciabola, L. Mony, P. Paoletti, and J.A. Pandit, Novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists, Mol. Pharmacol. 89 (2006), pp. 541–551. doi:10.1124/mol.115.103036.
  • C.N. Haile, J.W. Murrough, D.V. Iosifescu, L.C. Chang, R.K. Al Jurdi, A. Foulkes, S. Iqbal, J.J. Mahoney, R. De La Garza, D.S. Charney, T.F. Newton, and S.J. Mathew, Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression, Int. J. Neuropsychopharmacol. 17 (2014), pp. 331–336. doi:10.1017/S1461145713001119.
  • J.A. Siuciak, D.R. Lewis, S.J. Wiegand, and R.M. Lindsay, Antidepressant-like effect of brain-derived neurotrophic factor (BDNF), Pharmacol. Biochem. Behav. 56 (1997), pp. 131–137. doi:10.1016/S0091-3057(96)00169-4.
  • S.F. Traynelis, L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, and R. Dingledine, Glutamate receptor ion channels: Structure, regulation, and function, Pharmacol. Rev. 62 (2010), pp. 405–496. doi:10.1124/pr.109.002451.
  • R.S. Petralia and R.J. Wenthold, NMDA receptors, in The Glutamate Receptors, R.W. Gereau and G.T. Swanson, eds., Humana Press, Totowa, NJ, 2008, pp. 45–98.
  • B. Gotti, D. Duverger, J. Bertin, C. Carter, R. Dupont, J. Frost, B. Gaudilliere, E.T. MacKenzie, J. Rousseau, and B. Scatton, Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia, J. Pharmacol. Exp. Ther. 247 (1988), pp. 1211–1221.
  • J.R. Moskal, A.G. Kuo, C. Weiss, P.L. Wood, A. O’Connor Hanson, S. Kelso, R.B. Harris, and J.F. Disterhoft, GLYX-13: A monoclonal antibody-derived peptide that acts as an N-methyl-d-aspartate receptor modulator, Neuropharmacology 49 (2005), pp. 1077–1087. doi:10.1016/j.neuropharm.2005.06.006.
  • J.R. Moskal, J.S. Burgdorf, P.K. Stanton, R.A. Kroes, J.F. Disterhoft, R.M. Burch, and M. Amin Khan, The development of rapastinel (formerly GLYX-13); A rapid acting and long lasting antidepressant, Curr. Neuropharmacol. 15 (2007), pp. 47–56. doi:10.2174/1570159X14666160321122703.
  • R.-M. Ragguett, C. Rong, K. Kratiuk, and R.S. McIntyre, Rapastinel – an investigational NMDA-R modulator for major depressive disorder: Evidence to date, Expert Opin. Investig. Drugs 28 (2009), pp. 113–119. doi:10.1080/13543784.2019.1559295.
  • https://www.molinspiration.com/services/logp.html
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461.
  • A. Jakalian, B.L. Bush, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method, J. Comput. Chem. 21 (2000), pp. 132–146. doi:10.1002/(SICI)1096-987X(20000130)21:2<>1.0.CO;2-6.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/(ISSN)1096-987X.
  • Z. Tan, A. Spasic, and D.H. Mathews, 96 benchmark of amber FF12SB force field by comparison of estimated hairpin loop folding stabilities to experiments, J. Biomol. Struct. Dyn. 33 (2015), pp. 61–62. doi:10.1080/07391102.2015.1032713.
  • D.J. Sindhikara, N. Yoshida, and F. Hirata, Placevent: An algorithm for prediction of explicit solvent atom distribution—application to HIV-1 protease and F-ATP synthase, J. Comput. Chem. 33 (2012), pp. 1536–1543. doi:10.1002/jcc.v33.18.
  • R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald, J. Chem. Theor. Comput. 9 (2013), pp. 3878–3888. doi:10.1021/ct400314y.
  • N. Homeyer and H. Gohlke, Free energy calculations by the molecular mechanics Poisson−Boltzmann surface area method, Mol. Inform. 31 (2012), pp. 114–122. doi:10.1002/minf.201100135.
  • T.E. Balius, M. Fischer, R.M. Stein, T.B. Adler, C.N. Nguyen, A. Cruz, M.K. Gilson, T. Kurtzman, and B.K. Shoichet, Testing inhomogeneous solvation theory in structure-based ligand discovery, Proc. Natl. Acad. Sci. U.S.A. 114 (2017), pp. E6839–E6846. doi:10.1073/pnas.1703287114.
  • F. Albericio, Solid-Phase Synthesis: A Practical Guide, 1st ed., CRC Press, Boca Raton, 2000.
  • S.M. Jones, L.D. Snell, and K.M. Johnson, Characterization of the binding of radioligands to the N-methyl-D-aspartate, phencyclidine, and glycine receptors in buffy coat membranes, J. Pharmacol. Meth. 21 (1989), pp. 161–168. doi:10.1016/0160-5402(89)90034-X.
  • V.S. Vorobjev, Vibrodissociation of sliced mammalian nervous tissue, J. Neurosci. Meth. 38 (1991), pp. 145–150. doi:10.1016/0165-0270(91)90164-U.
  • H.J. Böhm, The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comput. Aided Mol. Des. 8 (1994), pp. 243–256. doi:10.1007/BF00126743.
  • F. Jalali-Yazdi, S. Chowdhury, C. Yoshioka, and E. Gouaux, Mechanisms for zinc and proton inhibition of the GluN1/GluN2A NMDA receptor, Cell 175 (2018), pp. 1520–1532.e15. doi:10.1016/j.cell.2018.10.043.
  • E. Karakas, N. Simorowski, and H. Furukawa, Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors, Nature 475 (2011), pp. 249–253. doi:10.1038/nature10180.
  • D. Karlov, E. Radchenko, A. Zefirov, V. Palyulin, V. Pentkovski, and N. Zefirov, On mechanism of allosteric modulation of NMDA receptor via amino-terminal domains, Biochem. Biophys. Res. Commun. 424 (2012), pp. 687–690. doi:10.1016/j.bbrc.2012.07.009.
  • M.C. Regan, Z. Zhu, H. Yuan, S.J. Myers, D.S. Menaldino, Y.A. Tahirovic, D.C. Liotta, S.F. Traynelis, and H. Furukawa, Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors, Nat. Commun. 10 (2019), pp. 321.
  • D.S. Karlov, M.I. Lavrov, V.A. Palyulin, and N.S. Zefirov, MM-GBSA and MM-PBSA performance in activity evaluation of AMPA receptor positive allosteric modulators, J. Biomol. Struct. Dyn. 36 (2018), pp. 2508–2516. doi:10.1080/07391102.2017.1360208.
  • E. Pinard, A. Alanine, A. Bourson, B. Büttelmann, M.-P. Heitz, V.R.G. Mutel, G. Trube, and R. Wyler, 4-Aminoquinolines as a novel class of NR1/2B subtype selective NMDA receptor antagonists, Bioorg. Med. Chem. Lett. 12 (2002), pp. 2615–2619. doi:10.1016/S0960-894X(02)00470-5.
  • G. Klebe, Applying thermodynamic profiling in lead finding and optimization, Nat. Rev. Drug Discov. 14 (2015), pp. 95–110. doi:10.1038/nrd4486.
  • J.N.C. Kew, J.G. Richards, V. Mutel, and J.A. Kemp, Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons, J. Neurosci. 18 (1998), pp. 1935–1943. doi:10.1523/JNEUROSCI.18-06-01935.1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.