130
Views
3
CrossRef citations to date
0
Altmetric
Articles

Supercomputer docking with a large number of degrees of freedom

, , , , &
Pages 733-749 | Received 11 Jul 2019, Accepted 20 Aug 2019, Published online: 24 Sep 2019

References

  • G. Sliwoski, S. Kothiwale, J. Meiler, and E.W. Lowe, Computational methods in drug discovery, Pharmacol. Rev. 66 (2014), pp. 334–395. doi:10.1124/pr.112.007336.
  • V.A. Sadovnichy and V.B. Sulimov, Supercomputer technologies in medicine, in Supercomputer Technologies in Science, Education, and Industry, V.A. Sadovnichii, G.I. Savin, and Vl.V. Voevodin, eds., Moscow University Publishing, Moscow, 2009, pp. 16–23
  • Y.C. Chen, Beware of docking!, Trends. Pharmacol. Sci. 36 (2015), pp. 78–95. doi:10.1016/j.tips.2014.12.001.
  • V.B. Sulimov, D.C. Kutov, and A.V. Sulimov, Advances in docking, Curr. Med. Chem. 26 (2019), pp. 1–25.
  • E. Yuriev, J. Holien, and P.A. Ramsland, Improvements, trends, and new ideas in molecular docking: 2012–2013 in review, J. Mol. Recognit. 28 (2015), pp. 581–604. doi:10.1002/jmr.2471.
  • A.V. Sulimov, D.C. Kutov, I.V. Oferkin, E.V. Katkova, and V.B. Sulimov, Application of the docking program SOL for CSAR benchmark, J. Chem. Inf. Model. 53 (2013), pp. 1946–1956. doi:10.1021/ci400094h.
  • D.A. Antunes, D. Devaurs, and L.E. Kavraki, Understanding the challenges of protein flexibility in drug design, Expert Opin. Drug Discov. 10 (2015), pp. 1301–1313. doi:10.1517/17460441.2015.1094458.
  • S.V. Lushchekina, G.F. Makhaeva, D.A. Novichkova, I.V. Zueva, N.V. Kovaleva, and R.R. Richardson, Supercomputer modeling of dual-site acetylcholinesterase (AChE) inhibition, Supercomp. Front. Innov. 5 (2018), pp. 89–97.
  • I.V. Oferkin, E.V. Katkova, A.V. Sulimov, D.C. Kutov, S.I. Sobolev, V.V. Voevodin, and V.B. Sulimov, Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima, Adv. Bioinf. 2015 (2015), pp. 126858. doi:10.1155/2015/126858.
  • A.V. Sulimov, D.C. Kutov, E.V. Katkova, and V.B. Sulimov, Combined docking with classical force field and quantum chemical semiempirical method PM7, Adv. Bioinf. 2017 (2017), pp. 7167691. doi:10.1155/2017/7167691.
  • A.V. Sulimov, D.C. Kutov, E.V. Katkova, I.S. Ilin, and V.B. Sulimov, New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking, J. Mol. Graph. Model. 78 (2017), pp. 139–147. doi:10.1016/j.jmgm.2017.10.007.
  • D.C. Kutov, A.V. Sulimov, and V.B. Sulimov, Supercomputer docking: Investigation of low energy minima of protein-ligand complexes, Supercomp. Front. Innov. 5 (2018), pp. 134–137.
  • A.V. Sulimov, D.A. Zheltkov, I.V. Oferkin, D.C. Kutov, E.V. Katkova, E.E. Tyrtyshnikov, and V.B. Sulimov, Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms, Comput. Struct. Biotechnol. J. 15 (2017), pp. 275–285. doi:10.1016/j.csbj.2017.02.004.
  • A.V. Sulimov, D.A. Zheltkov, I.V. Oferkin, D.C. Kutov, E.V. Katkova, E.E. Tyrtyshnikov, and V.B. Sulimov, Tensor train global optimization: Application to docking in the configuration space with a large number of dimensions, in Communications in Computer and Information Science, V. Voevodin and S. Sobolev, eds., Vol. 793, Springer International Publishing, Cham, 2017, pp. 151–167.
  • E. Nikitina, V. Sulimov, F. Grigoriev, O. Kondakova, and S. Luschekina, Mixed implicit/explicit solvation models in quantum mechanical calculations of binding enthalpy for protein-ligand complexes International, Int. J. Quantum Chem. 106 (2006), pp. 1943–1963. doi:10.1002/qua.20943.
  • N.S. Pagadala, K. Syed, and J. Tuszynski, Software for molecular docking: A review, Biophys. Rev. 9 (2017), pp. 91–102. doi:10.1007/s12551-016-0247-1.
  • E. Perola, W.P. Walters, and P.S. Charifson, A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance, Proteins 56 (2004), pp. 235–249. doi:10.1002/prot.20088.
  • T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17 (1996), pp. 490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<>1.0.CO;2-C.
  • T.A. Halgren, Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions, J. Comput. Chem. 17 (1996), pp. 520–552. doi:10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W.
  • T.A. Halgren, Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94, J. Comput. Chem. 17 (1996), pp. 553–586. doi:10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T.
  • T.A. Halgren and R.B. Nachbar, Merck molecular force field. IV. Conformational energies and geometries for MMFF94, J. Comput. Chem. 17 (1996), pp. 587–615. doi:10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q.
  • M.D. Beachy, D. Chasman, R.B. Murphy, T.A. Halgren, and R.A. Friesner, Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields, J. Am. Chem. Soc. 119 (1997), pp. 5908–5920. doi:10.1021/ja962310g.
  • I. Oseledets and E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use svd in many dimensions, SIAM J. Sci. Comput. 31 (2009), pp. 3744–3759. doi:10.1137/090748330.
  • I. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (2011), pp. 2295–2317. doi:10.1137/090752286.
  • I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl. 432 (2010), pp. 70–88. doi:10.1016/j.laa.2009.07.024.
  • S. Goreinov and E. Tyrtyshnikov, The maximal-volume concept in approximation by low-rank matrices, Contemp. Math. 268 (2001), pp. 47–51.
  • D.A. Zheltkov, I.V. Oferkin, E.V. Katkova, A.V. Sulimov, V.B. Sulimov, and E.E. Tyrtyshnikov, TTDock: A docking method based on tensor train decompositions, Num. Meth. Prog. 14 (2013), pp. 279–291.
  • I.V. Oferkin, D.A. Zheltkov, E.E. Tyrtyshnikov, A.V. Sulimov, D.C. Kutov, and V.B. Sulimov, Evaluation of the docking algorithm based on Tensor Train global optimization, Bull. SUSU MMCS 8 (2015), pp. 83–99. doi:10.14529/mmp150407.
  • A.S. Hauser and B. Windshügel, LEADS-PEP: A benchmark data set for assessment of peptide docking performance, J. Chem. Inf. Model. 56 (2016), pp. 188–200. doi:10.1021/acs.jcim.5b00234.
  • J.L. Lau and M.K. Dunn, Therapeutic peptides: Historical perspectives, current development trends, and future directions, Bioorg. Med. Chem. 26 (2018), pp. 2700–2707. doi:10.1016/j.bmc.2017.06.052.
  • C.F. Wong, Flexible receptor docking for drug discovery, Expert Opin. Drug Discov. 10 (2015), pp. 1189–1200. doi:10.1517/17460441.2015.1078308.
  • A. Fujino, K. Fukushima, T. Kubota, T. Kosugi, and M. Takimoto-Kamimura, Crystal structure of human cyclin-dependent kinase-2 complex with MK2 inhibitor TEI-I01800: Insight into the selectivity, J. Synchrotron Radiat. 20 (2013), pp. 905–909. doi:10.1107/S0909049513020736.
  • E. Glaab, Building a virtual ligand screening pipeline using free software: A survey, Brief. Bioinf 17 (2016), pp. 352–366. doi:10.1093/bib/bbv037.
  • J. Hostaš, J. Řezáč, and P. Hobza, On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions, Chem. Phys. Lett. 568–569 (2013), pp. 161–166. doi:10.1016/j.cplett.2013.02.069.
  • A.J. Bordner, C.N. Cavasotto, and R.A. Abagyan, Accurate transferable model for water, n-octanol, and n-hexadecane solvation free energies, Russ. J. Phys. Chem. B 106 (2002), pp. 11009–11015. doi:10.1021/jp0264477.
  • V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, “lomonosov”: Supercomputing at Moscow State University in Contemporary High Performance Computing: From Petascale toward Exascale, J.S. Vetter, ed., Boca Raton, United States, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.