253
Views
2
CrossRef citations to date
0
Altmetric
Articles

Toxicity profiling and prioritization of plant-derived antimalarial agents

&
Pages 801-824 | Received 27 Jun 2019, Accepted 06 Sep 2019, Published online: 30 Sep 2019

References

  • World Health Organisation, World Malaria Report 2017, WHO, Geneva, Switzerland, 2017.
  • B. Autino, A. Noris, R. Russo, and F. Castelli, Epidemiology of malaria in endemic areas, Mediterr. J. Hematol. Infect. Dis. 4 (2012), pp. e2012060. doi:10.4084/MJHID.2012.060.
  • A. Amir, F.W. Cheong, J.R. de Silva, J.W.K. Liew, and Y.L. Lau, Plasmodium knowlesi malaria: Current research perspectives, Infect. Drug. Resist. 11 (2018), pp. 1145–1155. doi:10.2147/IDR.S148664.
  • K.M. Krishnan and K.C. Williamson, The proteasome as a target to combat malaria: Hits and misses, Transl. Res. 198 (2018), pp. 40–47. doi:10.1016/j.trsl.2018.04.007.
  • M. Prudêncio, A. Rodriguez, and M.M. Mota, The silent path to thousands of merozoites: The Plasmodium liver stage, Nat. Rev. Microbiol. 4 (2006), pp. 849–856. doi:10.1038/nrmicro1529.
  • S. Antinori, L. Galimberti, L. Milazzo, and M. Corbellino, Biology of human malaria plasmodia including Plasmodium knowlesi, Mediterr. J. Hematol. Infect. Dis. 4 (2012), pp. e2012013. doi:10.4084/MJHID.2012.013.
  • J.M. Crutcher and S.L. Hoffman, Malaria, in Medical Microbiology, S. Baron, ed., 4th ed., University of Texas Medical Branch at Galveston, chapter 83, Galveston, 1996. Available at https://www.ncbi.nlm.nih.gov/books/NBK8584/.
  • M.B. Wells and D.J. Andrew, “Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi”, Parasit Vect. 8 (2015), pp. 617. doi:10.1186/s13071-015-1229-z.
  • R.S. Nussenzweig, J. Vanderberg, H. Most, and C. Orton, Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei, Nature 216 (1967), pp. 160–162. doi:10.1038/216160a0.
  • A.J. Birkett, Status of vaccine research and development of vaccines for malaria, Vaccine 34 (2016), pp. 2915–2920. doi:10.1016/j.vaccine.2015.12.074.
  • S.J. Draper, B.K. Sack, C.R. King, C.M. Nielsen, J.C. Rayner, M.K. Higgins, C.A. Long, and R.A. Seder, Malaria vaccines: Recent advances and new horizons, Cell Host Microbe 24 (2018), pp. 43–56. doi:10.1016/j.chom.2018.06.008.
  • W.H. Tham, J.G. Beeson, and J.C. Rayner, Plasmodium vivax vaccine research – We’ve only just begun, Int. J. Parasitol. 47 (2017), pp. 111–118. doi:10.1016/j.ijpara.2016.09.006.
  • WHO, Malaria vaccine pilot launched in Malawi, 2019; Available at https://www.who.int/news-room/detail/23-04-2019-malaria-vaccine-pilot-launched-in-malawi (Date accessed: July 8, 2019).
  • J.V. Pai-Dhungat, Caventou, Pelletier & history of quinine, J. Assoc. Phys. India 63 (2015), pp. 58.
  • J. Achan, A.O. Talisuna, A. Erhart, A. Yeka, J.K. Tibenderana, F.N. Baliraine, P.J. Rosenthal, and U. D’Alessandro, Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria, Malar. J. 10 (2011), pp. 144. doi:10.1186/1475-2875-10-144.
  • A.R. Butler, S. Khan, and E. Ferguson, A brief history of malaria chemotherapy, J. R. Coll. Physicians Edinb. 40 (2010), pp. 172–177.
  • P.B. Bloland, Drug Resistance in Malaria, World Health Organization, Switzerland, WHO/CDS/CSR/DRS/2001.4, 2001.
  • M.A. Biamonte, J. Wanner, and K.G. Le Roch, Recent advances in malaria drug discovery, Bioorg. Med. Chem. Lett. 23 (2013), pp. 2829–2843. doi:10.1016/j.bmcl.2013.03.067.
  • J. Yuan, K.C.C. Cheng, R.L. Johnson, R. Huang, S. Pattaradilokrat, A. Liu, R. Guha, D. Fidock, J. Inglese, T.E. Wellems, C.P. Austin, and X.Z. Su, Chemical genomic profiling for antimalarial therapies, response signatures and molecular targets, Science 333 (2011), pp. 724–729. doi:10.1126/science.1205216.
  • J. Devillers, Repurposing insecticides and drugs for the control of mosquitoes and their diseases, in Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, J. Devillers, ed., CRC Press, Boca Raton, USA, 2018, pp. 1–37.
  • W. Karcher and J. Devillers, Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
  • Danishuddin, G. Madhukar, M.Z. Malik, and N. Subbarao, Development and rigorous validation of antimalarial predictive models using machine learning approaches, SAR QSAR Environ. Res. 30 (2019), pp. 543–560. doi:10.1080/1062936X.2019.1635526.
  • S. Rout and R.K. Mahapatra, In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target, Bioorg. Med. Chem. 27 (2019), pp. 2553–2571. doi:10.1016/j.bmc.2019.03.039.
  • S. Kondaparla, U. Debnath, A. Soni, V.R. Dola, M. Sinha, K. Srivastava, S.K. Puri, and S.B. Katti, Synthesis, biological evaluation, and molecular modeling studies of chiral chloroquine analogues as antimalarial agents, Antimicrob. Agents Chemother. 62 (2018), pp. e02347–17. doi:10.1128/AAC.02347-17.
  • K. Inthajak, P. Toochinda, and L. Lawtrakul, Application of molecular docking and PSO-SVR intelligent approaches in antimalarial activity prediction of enantiomeric cycloguanil analogues, SAR QSAR Environ. Res. 29 (2018), pp. 957–974. doi:10.1080/1062936X.2018.1536678.
  • G. Kaur, E. Pavadai, S. Wittlin, and K. Chibale, 3D-QSAR modeling and synthesis of new fusidic acid derivatives as antiplasmodial agents, J. Chem. Inf. Model. 58 (2018), pp. 1553–1560. doi:10.1021/acs.jcim.8b00105.
  • M.N.N. Lima, C.C. Melo-Filho, G.C. Cassiano, B.J. Neves, V.M. Alves, R.C. Braga, P.V.L. Cravo, E.N. Muratov, J. Calit, D.Y. Bargieri, F.T.M. Costa, and C.H. Andrade, QSAR-driven design and discovery of novel compounds with antiplasmodial and transmission blocking activities, Front. Pharmacol. 9 (2018), pp. 146. doi:10.3389/fphar.2018.00146.
  • R.B. Aher and K. Roy, Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies, SAR QSAR Environ. Res. 28 (2017), pp. 390–414. doi:10.1080/1062936X.2017.1326401.
  • P. Sidorov, B. Viira, E. Davioud-Charvet, U. Maran, G. Marcou, D. Horvath, and A. Varnek, QSAR modeling and chemical space analysis of antimalarial compounds, J Comput. Aided Mol. Des. 31 (2017), pp. 441–451. doi:10.1007/s10822-017-0019-4.
  • M. Ekor, The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety, Front. Pharmacol. 4 (2013), pp. 177. doi:10.3389/fphar.2013.00177.
  • P.A. Onguéné, F. Ntie-Kang, J.A. Mbah, L.L. Lifongo, J.C. Ndom, W. Sippl, and L.M. Mbaze, The potential of anti-malarial compounds derived from African medicinal plants, part III: An in silico evaluation of drug metabolism and pharmacokinetics profiling, Org. Med. Chem. Lett. 4 (2014), pp. 6. doi:10.1186/s13588-014-0006-x.
  • S.A. Egieyeh, J. Syce, S.F. Malan, and A. Christoffels, Prioritization of anti-malarial hits from nature: Chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs, Malar. J. 15 (2016), pp. 50. doi:10.1186/s12936-016-1087-y.
  • P.A. Onguéné, F. Ntie-Kang, L.L. Lifongo, J.C. Ndom, W. Sippl, and L.M. Mbaze, The potential of anti-malarial compounds derived from African medicinal plants, part I: A pharmacological evaluation of alkaloids and terpenoids, Malar. J. 12 (2013), pp. 449. doi:10.1186/1475-2875-12-449.
  • F. Ntie-Kang, P.A. Onguéné, L.L. Lifongo, J.C. Ndom, W. Sippl, and L.M. Mbaze, The potential of anti-malarial compounds derived from African medicinal plants, part II: A pharmacological evaluation of non-alkaloids and non-terpenoids, Malar. J. 13 (2014), pp. 81. doi:10.1186/1475-2875-13-81.
  • K. Kaur, M. Jain, T. Kaur, and R. Jain, Antimalarials from nature, Bioorg. Med. Chem. 17 (2009), pp. 3229–3256. doi:10.1016/j.bmc.2009.02.050.
  • M. Frederich, M.P. Hayette, M. Tits, P. De Mol, and L. Angenot, In vitro activities of strychnos alkaloids and extracts against Plasmodium falciparum, Antimicrob. Agents Chemother. 43 (1999), pp. 2328–2331. doi:10.1021/np980144f.
  • M. Frédérich, M.J. Jacquier, P. Thépenier, P. De Mol, M. Tits, G. Philippe, C. Delaude, L. Angenot, and M. Zèches-Hanrot, Antiplasmodial activity of alkaloids from various strychnos species, J. Nat. Prod. 65 (2002), pp. 1381–1386. doi:10.1021/np020070e.
  • W.H. Pan, X.Y. Xu, N. Shi, S.W. Tsang, and H.J. Zhang, Antimalarial activity of plant metabolites, Int. J. Mol. Sci. 19 (2018), pp. E1382. doi:10.3390/ijms19051382.
  • J. Bero, M. Frédérich, and J. Quetin-Leclercq, Antimalarial compounds isolated from plants used in traditional medicine, J. Pharm. Pharmacol. 61 (2009), pp. 1401–1433. doi:10.1211/jpp/61.11.0001.
  • R. Caniato and L. Puricelli, Review: Natural antimalarial agents (1995–2001), Crit. Rev. Plant Sci. 22 (2003), pp. 79–105. doi:10.1080/713610851.
  • A.M. Pohlit, R.B. Lima, G. Frausin, L.F. Silva, S.C. Lopes, C.B. Moraes, P. Cravo, M.V. Lacerda, A.M. Siqueira, L.H. Freitas-Junior, and F.T. Costa, Amazonian plant natural products: Perspectives for discovery of new antimalarial drug leads, Molecules 18 (2013), pp. 9219–9240. doi:10.3390/molecules18089219.
  • G. Bringmann, K. Messer, K. Wolf, J. Mühlbacher, M. Grüne, R. Brun, and A.M. Louis, Dioncophylline E from Dioncophyllum thollonii, the first 7,3ʹ-coupled dioncophyllaceous naphthylisoquinoline alkaloid, Phytochemistry 60 (2002), pp. 389–397. doi:10.1016/S0031-9422(02)00109-7.
  • A.B. Oliveira, M.F. Dolabela, F.C. Braga, R.L.R.P. Jacome, F.P. Varotti, and M.M. Povoa, Plant-derived antimalarial agents: New leads and efficient phythomedicines. Part I. Alkaloids, An. Acad. Bras. Ciênc. 81 (2009), pp. 715–740.
  • R. Batista, J. Silva Ade Jr, and A.B. de Oliveira, Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products, Molecules 14 (2009), pp. 3037–3072. doi:10.3390/molecules14083037.
  • J. Bero and J. Quetin-Leclercq, Natural products published in 2009 from plants traditionally used to treat malaria, Planta Med. 77 (2011), pp. 631–640. doi:10.1055/s-0030-1250405.
  • M.H. Grace, C. Lategan, F. Mbeunkui, R. Graziose, P.J. Smith, I. Raskin, and M.A. Lila, Antiplasmodial and cytotoxic activities of drimane sesquiterpenes from Canella winterana, Nat. Prod. Commun. 5 (2010), pp. 1869–1872.
  • L.K. Basco, S. Mitaku, A.L. Skaltsounis, N. Ravelomanantsoa, F. Tillequin, M. Koch, and J. Le Bras, In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum, Antimicrob. Agents Chemother. 38 (1994), pp. 1169–1171. doi:10.1128/aac.38.5.1169.
  • M.F. Dolabela, S.G. Oliveira, J.M. Nascimento, J.M. Peres, H. Wagner, M.M. Póvoa, and A.B. de Oliveira, In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat malaria in the Brazilian Amazon, Phytomedicine 15 (2008), pp. 367–372. doi:10.1016/j.phymed.2008.02.001.
  • M.W. Muriithi, W.R. Abraham, J. Addae-Kyereme, I. Scowen, S.L. Croft, P.M. Gitu, H. Kendrick, E.N. Njagi, and C.W. Wright, Isolation and in vitro antiplasmodial activities of alkaloids from Teclea trichocarpa: In vivo antimalarial activity and X-ray crystal structure of normelicopicine, J. Nat. Prod. 65 (2002), pp. 956–959. doi:10.1021/np0106182.
  • A.O. Adeeko and O.A. Dada, Chloroquine reduces fertilizing capacity of epididyma sperm in rats, Afr. J. Med. Med. Sci. 27 (1998), pp. 63–64.
  • S.A. Olumide and Y. Raji, Long-term administration of artesunate induces reproductive toxicity in male rats, J. Reprod. Infertil. 12 (2011), pp. 249–260.
  • E.A. Erhirhie, Antimalarial therapies and infertility: A comprehensive review, Toxicol. Intern. 23 (2006), pp. 107–111. doi:10.22506/ti/2016/v23/i2/146684.
  • Y.R. Niu, B. Wei, B. Chen, L.H. Xu, X. Jing, C.L. Peng, and T.Z. Ma, Amodiaquine-induced reproductive toxicity in adult male rats, Mol. Reprod. Dev. 83 (2016), pp. 174–182. doi:10.1002/mrd.22603.
  • S.C. Gbotolorun, O. Inikori, O.D. Bamisi, A.A.A. Osinubi, and A.O. Okanlawon, Quinine inhibits ovulation and produces oxidative stress in the ovary of cyclic Sprague-Dawley rats, Afr. Health Sci. 18 (2018), pp. 253–259. doi:10.4314/ahs.v18i2.8.
  • J. Devillers, N. Marchand-Geneste, A. Carpy, and J.M. Porcher, SAR and QSAR modeling of endocrine disruptors, SAR QSAR Environ. Res. 17 (2006), pp. 393–412. doi:10.1080/10629360600884397.
  • J. Devillers, Endocrine Disruption Modeling, CRC Press, Boca Raton, FL, 2009. doi:10.1201/9781420076363.
  • P.I. Petkov, S. Temelkov, D.L. Villeneuve, G.T. Ankley, and O.G. Mekenyan, Mechanism-based categorization of aromatase inhibitors: A potential discovery and screening tool, SAR QSAR Environ. Res. 20 (2009), pp. 657–678. doi:10.1080/10629360903438347.
  • A.K. Saxena, J. Devillers, S.S. Bhunia, and E. Bro, Modelling inhibition of avian aromatase by azole pesticides, SAR QSAR Environ. Res. 26 (2015), pp. 757–782. doi:10.1080/1062936X.2015.1090749.
  • K. Kolšek, J. Mavri, M. Sollner Dolenc, S. Gobec, and S. Turk, Endocrine disruptome – An open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding, J. Chem. Inf. Model. 54 (2014), pp. 1254–1267. doi:10.1021/ci400649p.
  • J. Devillers, E. Bro, and F. Millot, Prediction of the endocrine disruption profile of pesticides, SAR QSAR Environ. Res. 26 (2015), pp. 831–852. doi:10.1080/1062936X.2015.1104809.
  • A. Plošnik, M. Vračko, and J. Mavri, Computational study of binding affinity to nuclear receptors for some cosmetic ingredients, Chemosphere 135 (2015), pp. 325–334. doi:10.1016/j.chemosphere.2015.04.075.
  • J. Devillers, H. Devillers, E. Bro, and F. Millot, Expert judgment based multicriteria decision models to assess the risk of pesticides on reproduction failures of grey partridge, SAR QSAR Environ. Res. 28 (2017), pp. 889–911. doi:10.1080/1062936X.2017.1402449.
  • P. Ruiz, A. Sack, M. Wampole, S. Bobst, and M. Vracko, Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors, Chemosphere 178 (2017), pp. 99–109. doi:10.1016/j.chemosphere.2017.03.026.
  • A. Usman and M. Ahmad, Computational study suggesting reconsideration of BPA analogues based on their endocrine disrupting potential estimated by binding affinities to nuclear receptors, Ecotoxicol. Environ. Saf. 171 (2019), pp. 154–161. doi:10.1016/j.ecoenv.2018.12.071.
  • A. Roncaglioni, N. Piclin, M. Pintore, and E. Benfenati, Binary classification models for endocrine disrupter effects mediated through the estrogen receptor, SAR QSAR Environ. Res. 19 (2008), pp. 697–733. doi:10.1080/10629360802550606.
  • K. Mansouri, A. Abdelaziz, A. Rybacka, A. Roncaglioni, A. Tropsha, A. Varnek, A. Zakharov, A. Worth, A.M. Richard, C.M. Grulke, D. Trisciuzzi, D. Fourches, D. Horvath, E. Benfenati, E. Muratov, E.B. Wedebye, F. Grisoni, G.F. Mangiatordi, G.M. Incisivo, H. Hong, H.W. Ng, I.V. Tetko, I. Balabin, J. Kancherla, J. Shen, J. Burton, M. Nicklaus, M. Cassotti, N.G. Nikolov, O. Nicolotti, P.L. Andersson, Q. Zang, R. Politi, R.D. Beger, R. Todeschini, R. Huang, S. Farag, S.A. Rosenberg, S. Slavov, X. Hu, and R.S. Judson, CERAPP: Collaborative estrogen receptor activity prediction project, Environ. Health Perspect. 124 (2016), pp. 1023–1033. doi:10.1289/ehp.1510267.
  • R.S. Judson, F.M. Magpantay, V. Chickarmane, C. Haskell, N. Tania, J. Taylor, M. Xia, R. Huang, D.M. Rotroff, D.L. Filer, K.A. Houck, M.T. Martin, N. Sipes, A.M. Richard, K. Mansouri, R.W. Setzer, T.B. Knudsen, K.M. Crofton, and R.S. Thomas, Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor, Toxicol. Sci. 148 (2015), pp. 137–154. doi:10.1093/toxsci/kfv168.
  • A. Cassano, A. Manganaro, T. Martin, D. Young, N. Piclin, M. Pintore, D. Bigoni, and E. Benfenati, CAESAR models for developmental toxicity, Chem. Cent. J. 4 Suppl 1 (2010), pp. S4. doi:10.1186/1752-153X-4-S1-S4.
  • D.K. Kochar, P. Agarwal, S.K. Kochar, R. Jain, N. Rawat, R.K. Pokharna, S. Kachhawa, and T. Srivastava, Hepatocyte dysfunction and hepatic encephalopathy in Plasmodium falciparum malaria, QJM 96 (2003), pp. 505–512. doi:10.1093/qjmed/hcg091.
  • A.C. Anand and P. Puri, Jaundice in malaria, J. Gastroenterol. Hepatol. 20 (2005), pp. 1322–1332. doi:10.1111/j.1440-1746.2005.03884.x.
  • R. Wielgo-Polanin, L. Lagarce, E. Gautron, B. Diquet, and P. Lainé-Cessac, Hepatotoxicity associated with the use of a fixed combination of chloroquine and proguanil, Int. J. Antimicrob. Agents 26 (2005), pp. 176–178. doi:10.1016/j.ijantimicag.2005.04.019.
  • M. Kamagaté, C.O. Diallo, D. Meless, T. Daubrey-Potey, A. Kakou, E. Balayssac, K.S. N’zue, J.C. Yavo, and H. Die-Kakou, Hépatonéphrites au cours du traitement du paludisme par les combinaisons thérapeutiques à partir d’une base de données de pharmacovigilance, Therapie 72 (2017), pp. 563–571. doi:10.1016/j.therap.2017.03.001.
  • B. Terziroli Beretta-Piccoli, G. Mieli-Vergani, R. Bertoli, L. Mazzucchelli, C. Nofziger, M. Paulmichl, and D. Vergani, Atovaquone/proguanil-induced autoimmune-like hepatitis, Hepatol. Commun. 1 (2017), pp. 293–298. doi:10.1002/hep4.1039.
  • F. Pizzo, A. Lombardo, A. Manganaro, and E. Benfenati, A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts, Front. Pharmacol. 22 (2016), pp. 442. doi:10.3389/fphar.2016.00442.
  • C.A. Lipinski, Lead- and drug-like compounds: The rule-of-five revolution, Drug Discov. Today Technol. 1 (2004), pp. 337–341. doi:10.1016/j.ddtec.2004.11.007.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 64 (2012), pp. 4–17. doi:10.1016/j.addr.2012.09.019.
  • A. Leo, C. Hansch, and D. Elkins, Partition coefficients and their uses, Chem. Rev. 71 (1971), pp. 525–616. doi:10.1021/cr60274a001.
  • I. Moriguchi, S. Hirono, Q. Liu, Y. Nakagome, and Y. Matsushita, Simple method of calculating octanol/water partition coefficient, Chem. Pharm. Bull. 40 (1992), pp. 127–130. doi:10.1248/cpb.40.127.
  • J. Devillers, D. Domine, C. Guillon, and W. Karcher, Simulating lipophilicity of organic molecules with a back-propagation neural network, J. Pharm. Sci. 87 (1998), pp. 1086–1090. doi:10.1021/js980101j.
  • J. Devillers and D. Domine, Comparison of reliability of log P values calculated from a group contribution approach and from the autocorrelation method, SAR QSAR Environ. Res. 7 (1997), pp. 195–232. doi:10.1080/10629369708039131.
  • J. Devillers, Calculation of octanol/water partition coefficients for pesticides: A comparative study, SAR QSAR Environ. Res. 10 (1999), pp. 249–262. doi:10.1080/10629369908039179.
  • J. Devillers, EVA/PLS versus autocorrelation/neural network estimation of partition coefficients, Perspect. Drug Discov. Design 19 (2000), pp. 117–131. doi:10.1023/A:100877160.
  • A. Daina, O. Michielin, and V. Zoete, iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach, J. Chem. Inf. Model. 54 (2014), pp. 3284–3301. doi:10.1021/ci500467k.
  • T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, and L. Lai, Computation of octanol-water partition coefficients by guiding an additive model with knowledge, J. Chem. Inf. Model. 47 (2007), pp. 2140–2148. doi:10.1021/ci700257y.
  • S.A. Wildman and G.M. Crippen, Prediction of physicochemical parameters by atomic contributions, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 868–873. doi:10.1021/ci990307l.
  • SILICOS-IT, Available at http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html.
  • W.M. Meylan and P.H. Howard, Atom/fragment contribution method for estimating octanol-water partition coefficients, J. Pharm. Sci. 84 (1995), pp. 83–92. doi:10.1002/jps.2600840120.
  • A.K. Ghose and G.M. Crippen, Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships I. Partition coefficients as a measure of hydrophobicity, J. Comput. Chem. 7 (1986), pp. 565–577. doi:10.1002/jcc.540070419.
  • V.N. Viswanadhan, M.R. Reddy, R.J. Bacquet, and M.D. Erion, Assessment of methods used for predicting lipophilicity: Application to nucleosides and nucleoside bases, J. Comput. Chem. 14 (1993), pp. 1019–1026. doi:10.1002/jcc.540140903.
  • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. A. 102 (1998), pp. 3762–3772. doi:10.1021/jp980230o.
  • A. Daina, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017), pp. 42717. doi:10.1038/srep42717.
  • W.J. Egan, K.M. Merz Jr, and J.J. Baldwin, Prediction of drug absorption using multivariate statistics, J. Med. Chem. 43 (2000), pp. 3867–3877. doi:10.1021/jm000292e.
  • A. Daina and V. Zoete, A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules, ChemMedChem 11 (2016), pp. 1117–1121. doi:10.1002/cmdc.201600182.
  • P. Ertl, B. Rohde, and P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43 (2000), pp. 3714–3717. doi:10.1021/jm000942e.
  • L. Chedik, D. Mias-Lucquin, A. Bruyere, and O. Fardel, In silico prediction for intestinal absorption and brain penetration of chemical pesticides in humans, Int. J. Environ. Res. Public Health 14 (2017), pp. E708. doi:10.3390/ijerph14070708.
  • H.T. Le, C.M. Schaldach, G.L. Firestone, and L.F. Bjeldanes, Plant-derived 3,3ʹ-Diindolylmethane is a strong androgen antagonist in human prostate cancer cells, J. Biol. Chem. 278 (2003), pp. 21136–21145. doi:10.1074/jbc.M300588200.
  • C. Jiang, H.J. Lee, G.X. Li, J. Guo, B. Malewicz, Y. Zhao, E.O. Lee, H.J. Lee, J.H. Lee, M.S. Kim, S.H. Kim, and J. Lu, Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: Identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer, Cancer Res. 66 (2006), pp. 453–463. doi:10.1158/0008-5472.CAN-05-1865.
  • G. Kallifatidis, J.J. Hoy, and B.L. Lokeshwar, Bioactive natural products for chemoprevention and treatment of castration-resistant prostate cancer, Semin. Cancer Biol. 40–41 (2016), pp. 160–169. doi:10.1016/j.semcancer.2016.06.003.
  • B. Weniger, C. Vonthron-Sénécheau, G.J. Arango, M. Kaiser, R. Brun, and R. Anton, A bioactive biflavonoid from Campnosperma panamense, Fitoterapia 75 (2004), pp. 764–767. doi:10.1016/j.fitote.2004.09.015.
  • B. Weniger, C. Vonthron-Sénécheau, M. Kaiser, R. Brun, and R. Anton, Comparative antiplasmodial, leishmanicidal and antitrypanosomal activities of several biflavonoids, Phytomedicine 13 (2006), pp. 176–180. doi:10.1016/j.phymed.2004.10.008.
  • R.J. Quinn, A.R. Carroll, N.B. Pham, P. Baron, M.E. Palframan, L. Suraweera, G.K. Pierens, and S. Muresan, Developing a drug-like natural product library, J. Nat. Prod. 71 (2008), pp. 464–468. doi:10.1021/np070526y.
  • J. Buckingham, Dictionary of Natural Products on CD-Rom, Chapman and Hall/CRC Press, London, 2005.
  • T.Z. Linn, S. Awale, Y. Tezuka, A.H. Banskota, S.K. Kalauni, F. Attamimi, J.Y. Ueda, P.B. Asih, D. Syafruddin, K. Tanaka, and S. Kadota, Cassane- and norcassane-type diterpenes from Caesalpinia crista of Indonesia and their antimalarial activity against the growth of Plasmodium falciparum, J. Nat. Prod. 68 (2005), pp. 706–710. doi:10.1021/np0401720.
  • M. Hewitt and K. Przybylak, In silico models for hepatotoxicity, Meth. Mol. Biol. 1425 (2016), pp. 201–236. doi:10.1007/978-1-4939-3609-0_11.
  • W.P. Walters, Going further than Lipinski’s rule in drug design, Expert Opin. Drug Discov. 7 (2012), pp. 99–107. doi:10.1517/17460441.2012.648612.
  • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases, J. Comb. Chem. 1 (1999), pp. 55–68.
  • D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, and K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002), pp. 2615–2623. doi:10.1021/jm020017n.
  • I. Muegge, S.L. Heald, and D. Brittelli, Simple selection criteria for drug-like chemical matter, J. Med. Chem. 44 (2001), pp. 1841–1846. doi:10.1021/jm015507e.
  • E. Benfenati, A. Golbamaki, G. Raitano, A. Roncaglioni, S. Manganelli, F. Lemke, U. Norinder, E. Lo Piparo, M. Honma, A. Manganaro, and G. Gini, A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity, SAR QSAR Environ. Res. 29 (2018), pp. 591–611. doi:10.1080/1062936X.2018.1497702.
  • S. Majumdar, S.C. Basak, C.N. Lungu, M.V. Diudea, and G.D. Grunwald, Mathematical structural descriptors and mutagenicity assessment: A study with congeneric and diverse datasets, SAR QSAR Environ. Res. 29 (2018), pp. 579–590. doi:10.1080/1062936X.2018.1496475.
  • K.P. Singh, S. Gupta, and P. Rai, Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches, Toxicol. Appl. Pharmacol. 272 (2013), pp. 465–475. doi:10.1016/j.taap.2013.06.029.
  • E. Mombelli and J. Devillers, Evaluation of the OECD (Q)SAR application toolbox and toxtree for predicting and profiling the carcinogenic potential of chemicals, SAR QSAR Environ. Res. 21 (2010), pp. 731–752. doi:10.1080/1062936X.2010.528598.
  • J. Devillers, E. Mombelli, and R. Samsera, Structural alerts for estimating the carcinogenicity of pesticides and biocides, SAR QSAR Environ. Res. 22 (2011), pp. 89–106. doi:10.1080/1062936X.2010.548349.
  • OECD, The report from the expert group on (quantitative) structure-activity relationships [(Q)SARs] on the principles for the validation of (Q)SARs, 2nd Meeting of the ad hoc Expert Group on QSARs, ENV/JM/MONO(2004)24, Number 49, OECD Headquarters, Paris, 20–21 September, 2004.
  • P.A. Onguéné, C.V. Simoben, G.W. Fotso, K. Andrae-Marobela, S.A. Khalid, B.T. Ngadjui, L.M. Mbaze, and F. Ntie-Kang, In silico toxicity profiling of natural product compound libraries from African flora with anti-malarial and anti-HIV properties, Comput. Biol. Chem. 72 (2018), pp. 136–149. doi:10.1016/j.compbiolchem.2017.12.002.
  • N. Greene, P.N. Judson, J.J. Langowski, and C.A. Marchant, Knowledge-based expert systems for toxicity and metabolism prediction DEREK, StAR and METEOR, SAR QSAR. Environ. Res. 10 (1999), pp. 299–314. doi:10.1080/10629369908039182.
  • D.E. Pires, T.L. Blundell, and D.B. Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem. 58 (2015), pp. 4066–4072. doi:10.1021/acs.jmedchem.5b00104.
  • P. Rasoanaivo, C.W. Wright, M.L. Willcox, and B. Gilbert, Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions, Malar. J. 15 (2011), pp. Sup. 1, S4. doi:10.1186/1475-2875-10-S1-S4.
  • T.N. Wells, Natural products as starting points for future anti-malarial therapies: Going back to our roots? Malar. J. 15 (2011), pp. Sup. 1, S3. doi:10.1186/1475-2875-10-S1-S3.
  • M. Feher and J.M. Schmidt, Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 218–227. doi:10.1021/ci0200467.
  • H. Ginsburg and E. Deharo, A call for using natural compounds in the development of new antimalarial treatments. An introduction, Malar. J. 10, (2011), pp. Sup. 1, S1. doi:10.1186/1475-2875-10-S1-S1.
  • J.F. Ferreira, D.L. Luthria, T. Sasaki, and A. Heyerick, Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer, Molecules 15 (2010), pp. 3135–3170. doi:10.3390/molecules15053135.
  • E.M. Williamson, Synergy and other interactions in phytomedicines, Phytomedicine 8 (2001), pp. 401–409. doi:10.1078/0944-7113-00060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.