182
Views
5
CrossRef citations to date
0
Altmetric
Articles

Externally predictive quantum-mechanical models for the adsorption of aromatic organic compounds by graphene-oxide nanomaterials

& ORCID Icon
Pages 847-863 | Received 15 Apr 2019, Accepted 29 Aug 2019, Published online: 02 Oct 2019

References

  • A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008), pp. 902–907. doi:10.1021/nl0731872.
  • K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008), pp. 351–355. doi:10.1016/j.ssc.2008.02.024.
  • M. Hu, Z. Yao, and X. Wang, Graphene-based nanomaterials for catalysis, Ind. Eng. Chem. Res. 56 (2017), pp. 3477–3502. doi:10.1021/acs.iecr.6b05048.
  • F. Perreault, A. Fonseca De Faria, and M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44 (2015), pp. 5861–5896. doi:10.1039/C5CS00021A.
  • M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4 (2011), pp. 668–674. doi:10.1039/C0EE00295J.
  • M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008), pp. 3498–3502. doi:10.1021/nl802558y.
  • H. Yan, H. Li, X. Tao, K. Li, H. Yang, A. Li, S. Xiao, and R. Cheng, Rapid removal and separation of iron(II) and manganese(II) from micropolluted water using magnetic graphene oxide, ACS Appl. Mater. Interfaces 6 (2014), pp. 9871–9880. doi:10.1021/am502377n.
  • C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, and A. Pluen, Graphene in therapeutics delivery: Problems, solutions and future opportunities, Eur. J. Pharm. Biopharm. 104 (2016), pp. 235–250. doi:10.1016/j.ejpb.2016.04.015.
  • G. Shim, M.G. Kim, J.Y. Park, and Y.K. Oh, Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs, Adv. Drug Deliv. Rev. 105 (2016), pp. 205–227. doi:10.1016/j.addr.2016.04.004.
  • J. Liu, L. Cui, and D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomater. 9 (2013), pp. 9243–9257. doi:10.1016/j.actbio.2013.08.016.
  • B. Zhang, Y. Wang, and G. Zhai, Biomedical applications of the graphene-based materials, Mater. Sci. Eng. C 61 (2016), pp. 953–964. doi:10.1016/j.msec.2015.12.073.
  • A. Gulzar, P. Yang, F. He, J. Xu, D. Yang, L. Xu, and M.O. Jan, Bioapplications of graphene constructed functional nanomaterials, Chem. Biol. Interact. 262 (2017), pp. 69–89. doi:10.1016/j.cbi.2016.11.019.
  • J. Lin, X. Chen, and P. Huang, Graphene-based nanomaterials for bioimaging, Adv. Drug Deliv. Rev. 105 (2016), pp. 242–254. doi:10.1016/j.addr.2016.05.013.
  • J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.-J. Zhu, and P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano Lett. 12 (2012), pp. 844–849. doi:10.1021/nl2038979.
  • T.P.D. Shareena, D. McShan, A.K. Dasmahapatra, and P.B. Tchounwou, A Review on graphene-based nanomaterials in biomedical applications and risks in environment and health, Nano-Micro Lett. 10 (2018), pp. 1–34. doi:10.1007/s40820-018-0206-4.
  • D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010), pp. 228–240. doi:10.1039/B917103G.
  • K.P. Loh, Q. Bao, P.K. Ang, and J. Yang, The chemistry of graphene, J. Mater. Chem. 20 (2010), pp. 2277–2289. doi:10.1039/b920539j.
  • J. Zhao, Z. Wang, J.C. White, and B. Xing, Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol. 48 (2014), pp. 9995–10009. doi:10.1021/es5022679.
  • Q. Zhang, Z. Wu, N. Li, Y. Pu, B. Wang, T. Zhang, and J. Tao, Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application, Mater. Sc. Eng. C 77 (2017), pp. 1363–1375. doi:10.1016/j.msec.2017.03.196.
  • S. Vranic, A.F. Rodrigues, M. Buggio, L. Newman, M.R.H. White, D.G. Spiller, C. Bussy, and K. Kostarelos, Live imaging of label-free graphene oxide reveals critical factors causing oxidative-stress-mediated cellular responses, ACS Nano 12 (2018), pp. 1373–1389. doi:10.1021/acsnano.7b07734.
  • S.R.-V. Castrillón, F. Perreault, A.F. De Faria, and M. Elimelech, Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy, Environ. Sci. Technol. Lett. 2 (2015), pp. 112–117. doi:10.1021/acs.estlett.5b00066.
  • G. Lalwani, M. D’Agati, A.M. Khan, and B. Sitharaman, Toxicology of graphene-based nanomaterials, Adv. Drug Deliv. Rev. 105 (2016), pp. 109–144. doi:10.1016/j.addr.2016.04.028.
  • X. Liu and K.L. Chen, Interactions of graphene oxide with model cell membranes: Probing nanoparticle attachment and lipid bilayer disruption, Langmuir 31 (2015), pp. 12076–12086. doi:10.1021/acs.langmuir.5b02414.
  • D. Dinda, A. Gupta, and S.K. Saha, Removal of toxic Cr(VI) by UV-active functionalized graphene oxide for water purification, J. Mater. Chem. A 1 (2013), pp. 11221–11228. doi:10.1039/c3ta12504a.
  • M.L. Chen, Y. Sun, C.B. Huo, C. Liu, and J.H. Wang, Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level, Chemosphere 130 (2015), pp. 52–58. doi:10.1016/j.chemosphere.2015.02.046.
  • H. Yan, H. Wu, K. Li, Y. Wang, X. Tao, H. Yang, A. Li, and R. Cheng, Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water, ACS Appl. Mater. Interfaces 7 (2015), pp. 6690–6697. doi:10.1021/acsami.5b00053.
  • Y. Wang, J. Chen, X. Wei, A.J.H. Maldonad, and Z. Chen, Unveiling adsorption mechanisms of organic pollutants onto carbon nanomaterials by density functional theory computations and linear free energy relationship modeling, Environ. Sci. Technol. 51 (2017), pp. 11820–11828. doi:10.1021/acs.est.7b02707.
  • X. Hu and Q. Zhou, Health and ecosystem risks of graphene, Chem. Rev. 113 (2013), pp. 3815–3835. doi:10.1021/cr300045n.
  • S. Wu, X. Zhao, Y. Li, Q. Du, J. Sun, Y. Wang, X. Wang, Y. Xia, Z. Wang, and L. Xia, Adsorption properties of doxorubicin hydrochloride onto graphene oxide: Equilibrium, kinetic and thermodynamic studies, Materials (Basel) 6 (2013), pp. 2026–2042. doi:10.3390/ma6052026.
  • W. Chen, L. Duan, L. Wang, and D. Zhu, Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes, Environ. Sci. Technol. 42 (2008), pp. 6862–6868. doi:10.1021/es8013612.
  • L. Ji, Y. Shao, Z. Xu, S. Zheng, and D. Zhu, Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching, Environ. Sci. Technol. 44 (2010), pp. 6429–6436. doi:10.1021/es1014828.
  • F. Wang, J. Yao, K. Sun, and B. Xing, Adsorption of dialkyl phthalate esters on carbon nanotubes, Environ. Sci. Technol. 44 (2010), pp. 6985–6991. doi:10.1021/es101326j.
  • M. Zou, J. Zhang, J. Chen, and X. Li, Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water, Environ. Sci. Technol. 46 (2012), pp. 8887–8894. doi:10.1021/es301370f.
  • X.R. Xia, N.A. Monteiro-Riviere, S. Mathur, X. Song, L. Xiao, S.J. Oldenberg, B. Fadeel, and J.E. Riviere, Mapping the surface adsorption forces of nanomaterials in biological systems, ACS Nano 5 (2011), pp. 9074–9081. doi:10.1021/nn203303c.
  • J. Comer, R. Chen, H. Poblete, A. Vergara-Jaque, and J.E. Riviere, Predicting adsorption affinities of small molecules on carbon nanotubes using molecular dynamics simulation, ACS Nano 9 (2015), pp. 11761–11774. doi:10.1021/acsnano.5b03592.
  • O.G. Apul, Q. Wang, T. Shao, J.R. Rieck, and T. Karanfil, Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes, Environ. Sci. Technol. 47 (2013), pp. 2295–2303. doi:10.1021/es3001689.
  • O.G. Apul, Y. Zhou, and T. Karanfil, Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes, J. Hazard. Mater. 295 (2015), pp. 138–144. doi:10.1016/j.jhazmat.2015.04.030.
  • Q. Zhao, K. Yang, W. Li, and B. Xing, Concentration-dependent polyparameter linear free energy relationships to predict organic compound sorption on carbon nanotubes, Sci. Rep. 4 (2014), pp. 1–7. doi:10.1038/srep03888
  • H. Metivier-Pignon, C. Faur, and P.L. Cloirec, Adsorption of dyes onto activated carbon cloth: Using QSPRs as tools to approach adsorption mechanisms, Chemosphere 66 (2007), pp. 887–893. doi:10.1016/j.chemosphere.2006.06.032.
  • H. Ding, C. Chen, and X. Zhang, Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water, SAR QSAR Environ. Res. 27 (2016), pp. 31–45. doi:10.1080/1062936X.2015.1132764.
  • G. Ersan, O.G. Apul, and T. Karanfil, Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes, Water Res. 98 (2016), pp. 28–38. doi:10.1016/j.watres.2016.03.067.
  • T. Hüffer, S. Endo, F. Metzelder, S. Schroth, and T.C. Schmidt, Prediction of sorption of aromatic and aliphatic organic compounds by carbon nanotubes using poly-parameter linear free-energy relationships, Water Res. 59 (2014), pp. 295–303. doi:10.1016/j.watres.2014.04.029.
  • S. Lata and Vikas, Concentration dependent adsorption of aromatic organic compounds by SWCNTs: Quantum-mechanical descriptors for nano-toxicological studies of biomolecules and agrochemicals, J. Mol. Graph. Model. 85 (2018), pp. 232–241. doi:10.1016/j.jmgm.2018.08.012.
  • S. Lata and Vikas, Exploring the role of quantum-mechanical descriptors in the concentration dependent adsorption of aromatic organic compounds by multiwalled carbon nanotubes, Int. J. Quantum Chem. 119 (2019), pp. e25825, 1–11. doi:10.1002/qua.25825.
  • S. Lata and Vikas, Quantum-mechanical-LSERs for the concentration-dependent adsorption of aromatic organic compounds by activated carbon: Applications and a comparison with CNTs, SAR QSAR Environ. Res. 30 (2019), pp. 109–130. doi:10.1080/1062936X.2019.1566173.
  • X.R. Xia, N.A. Monteiro-Riviere, and J.E. Riviere, An index for characterization of nanomaterials in biological systems, Nat. Nanotechnol. 5 (2010), pp. 671–675. doi:10.1038/nnano.2010.164.
  • X. Yu, W. Sun, and J. Ni, LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon, Environ. Pollut. 206 (2015), pp. 652–660. doi:10.1016/j.envpol.2015.08.031.
  • S. Shan, Y. Zhao, H. Tang, and F. Cui, Linear solvation energy relationship to predict the adsorption of aromatic contaminants on graphene oxide, Chemosphere 185 (2017), pp. 826–832. doi:10.1016/j.chemosphere.2017.07.062.
  • M.H. Abraham, Scales of solute hydrogen-bonding: Their construction and application to physicochemicai and biochemicai processes, Chem. Soc. Rev. 096 (1993), pp. 73–83. doi:10.1039/cs9932200073.
  • M.H. Abraham and W.E. Acree, Descriptors for the prediction of partition coefficients and solubilities of organophosphorus compounds, Sep. Sci. Technol. 48 (2013), pp. 884–897. doi:10.1080/01496395.2012.721043.
  • M.H. Abraham and W.E. Acree, Descriptors for pentane-2,4-dione and its derivatives, J. Solution Chem. 46 (2017), pp. 1625–1638. doi:10.1007/s10953-017-0667-y.
  • V. Chayawan and Vikas, Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules, Environ. Pollut. 218 (2016), pp. 615–624. doi:10.1016/j.envpol.2016.07.045.
  • Reenu and Vikas, Evaluating the role of electron-correlation in the external prediction of the toxicity of nitrobenzenes towards Tetrahymena pyriformis, New J. Chem. 40 (2016), pp. 2343–2353. doi:10.1039/C5NJ02552D.
  • Vikas and Chayawan, Single-descriptor based quantum-chemical QSPRs for physico-chemical properties of polychlorinated-dibenzo-p-dioxins and -dibenzo-furans (PCDD/Fs): Exploring the role of electron-correlation, Chemosphere 118 (2015), pp. 239–245. doi:10.1016/j.chemosphere.2014.08.072.
  • Chayawan and Vikas, Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of log SW, log KOA, and log KOW with electron-correlation, J. Hazard. Mater. 296 (2015), pp. 68–81. doi:10.1016/j.jhazmat.2015.04.028.
  • S. Lata and Vikas, Modeling the solubility of C70 fullerenes in diverse solvents: Role of quantum-mechanical descriptors, Mol. Inf. 38 (2019), pp. 1800112, 1–12. doi:10.1002/minf.201800112.
  • Vikas and Chayawan, Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors, Chemosphere 95 (2014), pp. 448–454. doi:10.1016/j.chemosphere.2013.09.093.
  • Reenu and Vikas, Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100, Ecotoxicol. Environ. Saf. 101 (2014), pp. 42–50. doi:10.1016/j.ecoenv.2013.11.020.
  • S. Lata and Vikas, Dispersibility of carbon nanotubes in organic solvents: Do we really have predictive models? J. Nanoparticle Res. 19 (2017), pp. 1–13. doi:10.1007/s11051-017-3883-x.
  • Reenu and Vikas, Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna, J. Mol. Graph. Model. 61 (2015), pp. 89–101. doi:10.1016/j.jmgm.2015.06.009.
  • Reenu and Vikas, Role of exchange and correlation in the real external prediction of mutagenicity: Performance of hybrid and meta-hybrid exchange-correlation functionals, RSC Adv. 5 (2015), pp. 29238–29251. doi:10.1039/C4RA14262D.
  • Vikas, Reenu, and Chayawan, Does electron-correlation has any role in the quantitative structure-activity relationships? J. Mol. Graph. Model. 42 (2013), pp. 7–16. doi:10.1016/j.jmgm.2013.02.005.
  • I.N. Levine, Quantum Chemistry, 7th ed., Pearson Prentice Hall, New York, 2014.
  • F. Jensen, Introduction to Computational Chemistry, John Wiley and Sons, Chichester, 2007.
  • E.G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Springer, Heidelberg, 2011.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 09, Revision B.01., Gaussian, Inc., Wallingford, CT, 2009.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate It? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058. doi:10.1021/ci300084j
  • R. Todeschini, V. Consonni, and A. Maiocchi, The K correlation index: Theory development and its application in chemometrics, Chemom. Intell. Lab. Syst. 46 (1999), pp. 13–29. doi:10.1016/S0169-7439(98)00124-5.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring r2m metrics for validation of QSPR models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205. doi:10.1016/j.chemolab.2011.03.011.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132. doi:10.1002/jcc.23420.
  • P. Gramatica, S. Cassani, and N. Chirico, QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS, J. Comput. Chem. 35 (2014), pp. 1036–1044. doi:10.1002/jcc.23576
  • F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (2005), pp. 3297–3305. doi:10.1039/b508541a.
  • Y. Zhao and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (2008), pp. 215–241. doi:10.1007/s00214-007-0310-x
  • F.H. Quina, F.A. Carroll, and D.M. Cheuy, A linear solvation energy relationship to predict vapor pressure from molecular structure, J. Braz. Chem. Soc. 16 (2005), pp. 1010–1016. doi:10.1590/S0103-50532005000600019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.