297
Views
20
CrossRef citations to date
0
Altmetric
Articles

Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context

, ORCID Icon, , ORCID Icon, , & show all
Pages 879-897 | Received 12 Jul 2019, Accepted 21 Sep 2019, Published online: 14 Oct 2019

References

  • European Commission, Regulation (EC) no 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending directive 1999/45/ECC and repealing Council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as Council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EEC and 2000/21/EC, Off. J. Eur. Union. 50 (2007), pp. 1–281.
  • A. Gissi, K. Louekari, L. Hoffstadt, N. Bornatowicz, and A.M. Aparicio, Alternative acute oral toxicity assessment under REACH based on sub-acute toxicity values, ALTEX 34 (2017), pp. 353–361. doi:10.14573/altex.1609121.
  • OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects, Organisation for Economic Cooperation and Development (OECD), Paris, FR, 2019. Available at http://www.oecd.org/env/ehs/testing/oecdguidelinesforthetestingofchemicals.htm.
  • I. Tsakovska, I. Lessigiarska, T. Netzeva, and A.P. Worth, A mini review of mammalian toxicity (Q)SAR models, QSAR Comb. Sci. 27 (2008), pp. 41–48. doi:10.1002/qsar.200710107.
  • J.X. Guo, J.J.-Q. Wu, J.B. Wright, and G.H. Lushington, Mechanistic insight into acetylcholinesterase inhibition and acute toxicity of organophosphorus compounds: A molecular modeling study, Chem. Res. Toxicol. 19 (2006), pp. 209–216. doi:10.1021/tx050090r.
  • A.P. Freidig, S. Dekkers, M. Verwei, E. Zvinavashe, J.G.M. Bessems, and J.J.M. van de Sandt, Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds, Toxicol. Lett. 170 (2007), pp. 214–222. doi:10.1016/j.toxlet.2007.03.008.
  • A.A. Toropov, B.F. Rasulev, and J. Leszczynski, QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: Comparative analysis by MLRA and optimal descriptors, QSAR Comb. Sci. 26 (2007), pp. 686–693. doi:10.1002/qsar.200610135.
  • Legal Information Institute, Predictive Models for Acute Oral Systemic Toxicity, National Toxicology Program, US Department of Health and Human Services, Bethesda, Maryland, US, 2019. Available at https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/acute-systemic-tox/models/index.html,
  • Electronic Code of Federal Regulations (40 Cfr Part 156), United States Government Publishing Office, Washington DC, US, 2019. Available at https://www.law.cornell.edu/cfr/text/40/part-156.html.
  • The European Parliament and the Council of the European Union, Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006, Off. J. Eur. Union 353 (2008), pp. 1–1389.
  • OECD, Guidance document on the validation of (quantitative) Structure Activity Relationship [(Q)SAR] models, Tech. Rep. ENV/JM/MONO(2007)2, Organisation for Economic Cooperation and Development, Paris, FR, 2007.
  • N.C. Kleinstreuer, A.L. Karmaus, K. Mansouri, D.G. Allen, J.M. Fitzpatrickc, and G. Patlewicz, Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation, Comput. Tox. 201 (2018), pp. 489–492.
  • D. Ballabio, F. Grisoni, V. Consonni, and R. Todeschini, Integrated QSAR models to predict acute oral systemic toxicity, preprint (2019), submitted for publication. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201800124.
  • G. Marcou, D. Horvath, F. Bonachera and A. Varnek, Laboratoire De Chemoinformatique UMR 7140 CNRS, University of Strasbourg, Strasbourg, FR, 2019. Available at http://infochim.u-strasbg.fr/cgi-bin/predictor.cgi.
  • C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen, The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 493–500. doi:10.1021/ci025584y.
  • T. Martin, P. Harten, and D. Young, (TEST) Toxicity Estimation Software Tool V 4.1, US Environmental Protection Agency, 2012; software available at https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.
  • Simulations Plus Inc, ADMET Predictor, Simulations Plus Inc., Lancaster, US, 2019; software available at http://www.simulations-plus.com/.
  • ACD/Labs, ACD/Percepta Platform V 2018.1, Advanced Chemistry Development, Inc. (ACD/Labs), 2019; software available at http://www.acdlabs.com/.
  • TerraBase, TerraQSAR Biological Effect Programs, TerraBase Inc., 2006; software available at http://www.terrabase-inc.com/.
  • Accelrys, (TOPKAT) TOxicity Prediction by Komputer Assisted Technology V 3.1, Accelrys software Inc., San Diego, CA, US, 2019; software available at http://www.3dsbiovia.com/.
  • OECD, Data from: EChemPortal: Global portal to information on chemical substances, Organisation for Economic Co-operation Development, dataset available at https://www.echemportal.org/echemportal/index.action.
  • OASIS, The OECD QSAR toolbox v 4.1, OASIS Laboratory of Mathematical Chemistry, 2017; software available at http://www.oecd.org/chemicalsafety/risk-assessment.
  • M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel, KNIME - the konstanz information miner: Version 2.0 and beyond, SIGKDD Explor. 11 (2009), pp. 26–31. doi:10.1145/1656274.1656280.
  • F. Ruggiu, G. Marcou, A. Varnek, and D. Horvath, ISIDA property-labelled fragment descriptors, Mol. Inform. 29 (2010), pp. 855–868. doi:10.1002/minf.201000099.
  • C.M. Bishop, M. Svensén, C.K.I. Williams, and M. Svens, The generative topographic mapping, Neural Comput. 10 (1998), pp. 215–234. doi:10.1162/089976698300017953.
  • N. Kireeva, I.I. Baskin, H.A. Gaspar, D. Horvath, G. Marcou, and A. Varnek, Generative topographic mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison, Mol. Inform. 31 (2012), pp. 301–312. doi:10.1002/minf.201100163.
  • H.A. Gaspar, I.I. Baskin, G. Marcou, D. Horvath, and A. Varnek, Chemical data visualization and analysis with incremental generative topographic mapping: Big data challenge, J. Chem. Inf. Model. 55 (2015), pp. 84–94. doi:10.1021/ci500575y.
  • D. Horvath, I. Baskin, G. Marcou, and A. Varnek, Generative topographic mapping of conformational space, Mol. Inform. 36 (2017), pp. 24–36. doi:10.1002/minf.201700036.
  • C. Chih-Chung and L. Chih-Jen, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 1–27. doi:10.1145/1961189.1961199.
  • I.H. Witten and E. Frank, The Weka Workbench, in Data Mining: Practical Machine Learning Tools and Techniques, I.H. Witte, eds., Morgan Kaufman Publishers, San Fransisco, 2005, pp. 363–449.
  • G. Marcou, D. Hor Vath, V. Solov’Ev, A. Arrault, P. Vayer, and A. Varnek, Interpretability of SAR/QSAR models of any complexity by atomic contributions, Mol. Inform. 31 (2012), pp. 639–642. doi:10.1002/minf.201100136.
  • G.M. Cramer, R.A. Ford, and R.L. Hall, Estimation of toxic hazard-a decision tree approach, Food Cosmet. Toxicol. 16 (1976), pp. 255–276. doi:10.1016/S0015-6264(76)80522-6.
  • S. Bhatia, T. Schultz, D. Roberts, J. Shen, L. Kromidas, and A. Marie Api, Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgment, Regul. Toxicol. Pharmacol. 71 (2015), pp. 52–62. doi:10.1016/j.yrtph.2014.11.005.
  • K. Mansouri, C.M. Grulke, R.S. Judson, and A.J. Williams, OPERA models for predicting physicochemical properties and environmental fate endpoints, J. Cheminform. 10 (2018), pp. 1–19. doi:10.1186/s13321-018-0263-1.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inform. 29 (2010), pp. 476–488. doi:10.1002/minf.201000061.
  • D. Fourches, E. Muratov, and A. Tropsha, Trust but verify: On the importance of chemical structure curation in chemoinformatics and qsar modeling research, J. Chem. Inf. Model. 50 (2010), pp. 1189–1204. doi:10.1021/ci100176x.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77. doi:10.1002/qsar.200390007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.