263
Views
9
CrossRef citations to date
0
Altmetric
Articles

Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil

ORCID Icon, ORCID Icon & ORCID Icon
Pages 19-32 | Received 30 Sep 2019, Accepted 27 Oct 2019, Published online: 13 Nov 2019

References

  • European Commission, Technical guidance document on risk assessment - Environmental risk assessment, PART II-Chapter 3, 2003.
  • EFSA, Scientific risk assessment of pesticides in the European Union (EU): EFSA contribution to on-going reflections by the EC, EFSA Support. Publ. 15 (2018), pp. 1367E.
  • European Commission and Directorate General for Health & Consumers. Addressing the New Challenges for Risk Assessment, European Commission, Luxembourg, 2013.
  • A. Di Guardo and J.L. Hermens, Challenges for exposure prediction in ecological risk assessment, Integr. Environ. Assess. Manag. 9 (2013), pp. e4–e14. doi:10.1002/ieam.1442.
  • F. Reichenberg and P. Mayer, Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils, Environ. Toxicol. Chem. 25 (2006), pp. 1239–1245. doi:10.1897/05-458R.1.
  • J.-J. Ortega-Calvo, W.P. Ball, R. Schulin, K.T. Semple, and L.Y. Wick, Bioavailability of pollutants and soil remediation, J. Environ. Qual. 36 (2007), pp. 1383–1384. doi:10.2134/jeq2007.0001.
  • J.-J. Ortega-Calvo, J. Harmsen, J.R. Parsons, K.T. Semple, M.D. Aitken, C. Ajao, C. Eadsforth, M. Galay-Burgos, R. Naidu, R. Oliver, W.J.G.M. Peijnenburg, J. Römbke, G. Streck, and B. Versonnen, From bioavailability science to regulation of organic chemicals, Environ. Sci. Technol. 49 (2015), pp. 10255–10264. doi:10.1021/acs.est.5b02412.
  • C.M. Vitale, K.K. Sjøholm, A. Di Guardo, and P. Mayer, Accelerated equilibrium sampling of hydrophobic organic chemicals in solid matrices: A proof of concept on how to reach equilibrium for PCBs within 1 day, Chemosphere (2019), pp. 124537. doi:10.1016/j.chemosphere.2019.124537.
  • C.M. Vitale and A. Di Guardo, A review of the predictive models estimating association of neutral and ionizable organic chemicals with dissolved organic carbon, Sci. Total Environ. 666 (2019), pp. 1022–1032. doi:10.1016/j.scitotenv.2019.02.340.
  • C.M. Vitale and A. Di Guardo, Predicting dissolved organic carbon partition and distribution coefficients of neutral and ionizable organic chemicals, Sci. Total Environ. 658 (2019), pp. 1056–1063. doi:10.1016/j.scitotenv.2018.12.282.
  • A. Di Guardo, T. Gouin, M. MacLeod, and M. Scheringer, Environmental fate and exposure models: Advances and challenges in 21st century chemical risk assessment, Environ. Sci. Process. Impacts 20 (2018), pp. 58–71. doi:10.1039/C7EM00568G.
  • F. De Laender, P.J. van den Brink, C.R. Janssen, and A. Di Guardo, The ChimERA project: Coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment, Environ. Sci. Pollut. Res. 21 (2014), pp. 6263–6267. doi:10.1007/s11356-014-2605-5.
  • F. De Laender, M. Morselli, H. Baveco, P.J. Van den Brink, and A. Di Guardo, Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling, Environ. Int. 74 (2015), pp. 181–190. doi:10.1016/j.envint.2014.10.012.
  • M. Morselli, M. Semplice, F. De Laender, P.J. Van den Brink, and A. Di Guardo, Importance of environmental and biomass dynamics in predicting chemical exposure in ecological risk assessment, Sci. Total Environ. 526 (2015), pp. 338–345. doi:10.1016/j.scitotenv.2015.04.072.
  • A. Di Guardo, M. Morselli, G. Morabito, M. Semplice, P.J. Van den Brink, and F. De Laender, European environmental scenarios of chemical bioavailability in freshwater systems, Sci. Total Environ. 580 (2017), pp. 1237–1246. doi:10.1016/j.scitotenv.2016.12.084.
  • D. Ghirardello, M. Morselli, M. Semplice, and A. Di Guardo, A dynamic model of the fate of organic chemicals in a multilayered air/soil system: Development and illustrative application, Environ. Sci. Technol. 44 (2010), pp. 9010–9017. doi:10.1021/es1023866.
  • E. Terzaghi, M. Morselli, M. Semplice, B.E.L. Cerabolini, K.C. Jones, M. Freppaz, and A. Di Guardo, SoilPlusVeg: An integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests, Sci. Total Environ. 595 (2017), pp. 169–177. doi:10.1016/j.scitotenv.2017.03.252.
  • E. Terzaghi, M. Morselli, E. Zanardini, C. Morosini, G. Raspa, and A. Di Guardo, Improving the SoilPlusVeg model to evaluate rhizoremediation and PCB fate in contaminated soils, Environ. Pollut. 241 (2018), pp. 1138–1145. doi:10.1016/j.envpol.2018.06.039.
  • M. Morselli, E. Terzaghi, and A. Di Guardo, Do environmental dynamics matter in fate models? Exploring scenario dynamics for a terrestrial and an aquatic system, Environ. Sci. Process. Impacts 20 (2018), pp. 145–156. doi:10.1039/C7EM00530J.
  • C. Moeckel, L. Nizzetto, A.D. Guardo, E. Steinnes, M. Freppaz, G. Filippa, P. Camporini, J. Benner, and K.C. Jones, Persistent organic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications for global cycling, Environ. Sci. Technol. 42 (2008), pp. 8374–8380. doi:10.1021/es801703k.
  • E. Terzaghi, E. Zanardini, C. Morosini, G. Raspa, S. Borin, F. Mapelli, L. Vergani, and A. Di Guardo, Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil, Sci. Total Environ. 612 (2018), pp. 544–560. doi:10.1016/j.scitotenv.2017.08.189.
  • L. Vergani, F. Mapelli, E. Zanardini, E. Terzaghi, A. Di Guardo, C. Morosini, G. Raspa, and S. Borin, Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions, Sci. Total Environ. 575 (2017), pp. 1395–1406. doi:10.1016/j.scitotenv.2016.09.218.
  • E. Terzaghi, L. Vergani, F. Mapelli, S. Borin, G. Raspa, E. Zanardini, C. Morosini, S. Anelli, P. Nastasio, V.M. Sale, S. Armiraglio, and A. Di Guardo, Rhizoremediation of weathered PCBs in a heavily contaminated agricultural soil: Results of a biostimulation trial in semi field conditions, Sci. Total Environ. 686 (2019), pp. 484–496. doi:10.1016/j.scitotenv.2019.05.458.
  • K. Kalbitz, S. Solinger, J.-H. Park, B. Michalzik, and E. Matzner, Controls on the dynamics of dissolved organic matter in soils: A review, Soil Sci. 165 (2000), pp. 277–304. doi:10.1097/00010694-200004000-00001.
  • M. Morselli, C.M. Vitale, A. Ippolito, S. Villa, R. Giacchini, M. Vighi, and A. Di Guardo, Predicting pesticide fate in small cultivated mountain watersheds using the DynAPlus model: Toward improved assessment of peak exposure, Sci. Total Environ. 615 (2018), pp. 307–318. doi:10.1016/j.scitotenv.2017.09.287.
  • M. Morselli, E. Terzaghi, F. Galimberti, and A. Di Guardo, Pesticide fate in cultivated mountain basins: The improved DynAPlus model for predicting peak exposure and directing sustainable monitoring campaigns to protect aquatic ecosystems, Chemosphere 210 (2018), pp. 204–214. doi:10.1016/j.chemosphere.2018.06.181.
  • ECHA, Options to addressnon-extractable residues in regulatorypersistence assessment, 2019.
  • FOCUS, Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration, EC Document Reference Sanco/10058/2005, FOCUS (FOrum for the Co-ordination of pesticide fate models and their USe), 2006.
  • A. Schäffer, M. Kästner, and S. Trapp, A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence, Environ. Sci. Eur. 30 (2018), pp. 51. doi:10.1186/s12302-018-0181-x.
  • C.M. Vitale, E. Terzaghi, D. Zati, and A. Di Guardo, How good are the predictions of mobility of aged polychlorinated biphenyls (PCBs) in soil? Insights from a soil column experiment, Sci. Total Environ. 645 (2018), pp. 865–875. doi:10.1016/j.scitotenv.2018.07.216.
  • M.S. McLachlan, G. Czub, and F. Wania, The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils, Environ. Sci. Technol. 36 (2002), pp. 4860–4867. doi:10.1021/es025662y.
  • C. Backe, I.T. Cousins, and P. Larsson, PCB in soils and estimated soil–air exchange fluxes of selected PCB congeners in the south of Sweden, Environ. Pollut. 128 (2004), pp. 59–72. doi:10.1016/j.envpol.2003.08.038.
  • Y. Persson, K. Hemström, L. Öberg, M. Tysklind, and A. Enell, Use of a column leaching test to study the mobility of chlorinated HOCs from a contaminated soil and the distribution of compounds between soluble and colloid phases, Chemosphere 71 (2008), pp. 1035–1042. doi:10.1016/j.chemosphere.2007.12.008.
  • A. Enell, S. Lundstedt, H.P.H. Arp, S. Josefsson, G. Cornelissen, O. Wik, and D. Berggren Kleja, Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil, Environ. Sci. Technol. 50 (2016), pp. 11797–11805. doi:10.1021/acs.est.6b02774.
  • S. Fiedler, B.S. Höll, A. Freibauer, K. Stahr, M. Drösler, M. Schloter, and H.F. Jungkunst, Particulate organic carbon (POC) in relation to other pore water carbon fractions in drained and rewetted fens in Southern Germany, Biogeosciences 5 (2008), pp. 1615–1623. doi:10.5194/bg-5-1615-2008.
  • D. Mackay, Multimedia Environmental Models: The Fugacity Approach, Lewis Publishers, Boca Raton, 2001.
  • L.P. Burkhard, Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals, Environ. Sci. Technol. 34 (2000), pp. 4663–4668. doi:10.1021/es001269l.
  • S.W. Karickhoff, Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils, Chemosphere 10 (1981), pp. 833–846. doi:10.1016/0045-6535(81)90083-7.
  • E. Terzaghi, G. Zacchello, M. Scacchi, G. Raspa, K.C. Jones, B. Cerabolini, and A. Di Guardo, Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest, Sci. Total Environ. 505 (2015), pp. 329–337. doi:10.1016/j.scitotenv.2014.09.108.
  • D. Ghirardello, M. Morselli, S. Otto, G. Zanin, and A. Di Guardo, Investigating the need for complex vs. simple scenarios to improve predictions of aquatic ecosystem exposure with the SoilPlus model, Environ. Pollut. 184 (2014), pp. 502–510. doi:10.1016/j.envpol.2013.10.002.
  • WHO, Terbuthylazine (TBA) in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, in Guidelines for drinking-water quality 2nd ed. Addendum to Vol. 2. Health criteria and other supporting information, World Health Organization, Geneva, 2003.
  • S. Frankki, Y. Persson, M. Tysklind, and U. Skyllberg, Partitioning of CPs, PCDEs, and PCDD/Fs between particulate and experimentally enhanced dissolved natural organic matter in a contaminated soil, Environ. Sci. Technol. 40 (2006), pp. 6668–6673. doi:10.1021/es0608850.
  • R.S. Boethling and D. Mackay (eds.), Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences, Lewis Publishers, Boca Raton, 2000.
  • E. Nfon, J.M. Armitage, and I.T. Cousins, Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems, Sci. Total Environ. 409 (2011), pp. 5416–5422. doi:10.1016/j.scitotenv.2011.08.070.
  • F.G. Renaud and C.D. Brown, Simulating pesticides in ditches to assess ecological risk (SPIDER): II. Benchmarking for the drainage model, Sci. Total Environ. 394 (2008), pp. 124–133. doi:10.1016/j.scitotenv.2008.01.014.
  • I. Roessink, C.T.A. Moermond, F. Gillissen, and A.A. Koelmans, Impacts of manipulated regime shifts in shallow lake model ecosystems on the fate of hydrophobic organic compounds, Water Res. 44 (2010), pp. 6153–6163. doi:10.1016/j.watres.2010.07.013.
  • M. Morselli, M. Semplice, S. Villa, and A. Di Guardo, Evaluating the temporal variability of concentrations of POPs in a glacier-fed stream food chain using a combined modeling approach, Sci. Total Environ. 493 (2014), pp. 571–579. doi:10.1016/j.scitotenv.2014.05.150.
  • J.M. Armitage, A. Franco, S. Gomez, and I.T. Cousins, Modeling the potential influence of particle deposition on the accumulation of organic contaminants by submerged aquatic vegetation, Environ. Sci. Technol. 42 (2008), pp. 4052–4059. doi:10.1021/es702439u.
  • D.R. de Figueiredo, A.S.S.P. Reboleira, S.C. Antunes, N. Abrantes, U. Azeiteiro, F. Gonçalves, and M.J. Pereira, The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake, Hydrobiologia 568 (2006), pp. 145–157. doi:10.1007/s10750-006-0196-y.
  • A. Rico, P.J. Van den Brink, R. Gylstra, A. Focks, and T.C. Brock, Developing ecological scenarios for the prospective aquatic risk assessment of pesticides: Ecological scenarios for pesticide risk assessment, Integr. Environ. Assess. Manag. 12 (2016), pp. 510–521. doi:10.1002/ieam.1718.
  • J. Kim, D. Mackay, and D.E. Powell, Roles of steady-state and dynamic models for regulation of hydrophobic chemicals in aquatic systems: A case study of decamethylcyclopentasiloxane (D5) and PCB-180 in three diverse ecosystems, Chemosphere 175 (2017), pp. 253–268. doi:10.1016/j.chemosphere.2017.02.050.
  • R. Ashauer and C.D. Brown, Highly time-variable exposure to chemicals-toward an assessment strategy: Highly time-variable exposure to chemicals, Integr. Environ. Assess. Manag. 9 (2013), pp. e27–e33. doi:10.1002/ieam.1421.
  • R. Ashauer, A.B.A. Boxall, and C.D. Brown, Modeling combined effects of pulsed exposure to carbaryl and chlorpyrifos on Gammarus pulex, Environ. Sci. Technol. 41 (2007), pp. 5535–5541. doi:10.1021/es070283w.
  • E. Terzaghi, M. Scacchi, B. Cerabolini, K.C. Jones, and A. Di Guardo, Estimation of polycyclic aromatic hydrocarbon variability in air using high volume, film, and vegetation as samplers, Environ. Sci. Technol. 49 (2015), pp. 5520–5528. doi:10.1021/es5056929.
  • A. Di Guardo, L. Nizzetto, A. Infantino, I. Colombo, E. Saporiti, and K.C. Jones, Field derived accumulation and release kinetics of DDTs in plants, Chemosphere 72 (2008), pp. 1497–1503. doi:10.1016/j.chemosphere.2008.04.072.
  • L. Nizzetto, A. Jarvis, P.A. Brivio, K.C. Jones, and A. Di Guardo, Seasonality of the air−forest canopy exchange of persistent organic pollutants, Environ. Sci. Technol. 42 (2008), pp. 8778–8783. doi:10.1021/es802019g.
  • P. Fantke, R. Juraske, A. Antón, R. Friedrich, and O. Jolliet, Dynamic multicrop model to characterize impacts of pesticides in food, Environ. Sci. Technol. 45 (2011), pp. 8842–8849. doi:10.1021/es201989d.
  • P. Fantke, P. Wieland, C. Wannaz, R. Friedrich, and O. Jolliet, Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling, Environ. Model. Softw. 40 (2013), pp. 316–324. doi:10.1016/j.envsoft.2012.09.016.
  • C.N. Legind, C.M. Kennedy, A. Rein, N. Snyder, and S. Trapp, Dynamic plant uptake model applied for drip irrigation of an insecticide to pepper fruit plants, Pest. Manag. Sci. 67 (2011), pp. 521–527. doi:10.1002/ps.v67.5.
  • A. Rein, C.N. Legind, and S. Trapp, New concepts for dynamic plant uptake models, SAR QSAR Environ. Res. 22 (2011), pp. 191–215. doi:10.1080/1062936X.2010.548829.
  • E. Undeman, G. Czub, and M.S. McLachlan, Addressing temporal variability when modeling bioaccumulation in plants, Environ. Sci. Technol. 43 (2009), pp. 3751–3756. doi:10.1021/es900265j.
  • S. Trapp, Dynamic root uptake model for neutral lipophilic organics, Environ. Toxicol. Chem. 21 (2002), pp. 203–206. doi:10.1002/etc.v21:1.
  • S. Trapp, Calibration of a plant uptake model with plant- and site-specific data for uptake of chlorinated organic compounds into radish, Environ. Sci. Technol. 49 (2015), pp. 395–402. doi:10.1021/es503437p.
  • E. Barriuso, S. Houot, and C. Serra-Wittling, Influence of compost addition to soil on the behaviour of herbicides, Pestic. Sci. 49 (1997), pp. 65–75. doi:10.1002/(SICI)1096-9063(199701)49:1<>1.0.CO;2-I.
  • S.M. Aggelides and P.A. Londra, Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil, Bioresour. Technol. 71 (2000), pp. 253–259. doi:10.1016/S0960-8524(99)00074-7.
  • K. Debosz, S.O. Petersen, L.K. Kure, and P. Ambus, Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties, Appl. Soil Ecol. 19 (2002), pp. 237–248. doi:10.1016/S0929-1393(01)00191-3.
  • D. Said-Pullicino, G. Gigliotti, and A.J. Vella, Environmental fate of triasulfuron in soils amended with municipal waste compost, J. Environ. Qual. 33 (2004), pp. 1743–1751. doi:10.2134/jeq2004.1743.
  • R.C. Brändli, T.D. Bucheli, T. Kupper, J. Mayer, F.X. Stadelmann, and J. Tarradellas, Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants, Environ. Pollut. 148 (2007), pp. 520–528. doi:10.1016/j.envpol.2006.11.021.
  • J.M. Antolín-Rodríguez, M. Sánchez-Báscones, P. Martín-Ramos, C.T. Bravo-Sánchez, and J. Martín-Gil, Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste, Environ. Sci. Pollut. Res. 23 (2016), pp. 12372–12383. doi:10.1007/s11356-016-6439-1.
  • L. Hughes, E. Webster, and D. Mackay, An evaluative screening level model of the fate of organic chemicals in sludge-amended soils including organic matter degradation, Soil Sed. Contam. Int. J. 17 (2008), pp. 564–585. doi:10.1080/15320380802425063.
  • C.E. Astete, W.D. Constant, L.J. Thibodeaux, R.K. Seals, and H.M. Selim, Bioturbation-driven particle transport in surface soil: The biodiffusion coefficient mobility parameter, Soil Sci. 180 (2015), pp. 2–9. doi:10.1097/SS.0000000000000109.
  • R. Bagnati, E. Terzaghi, A. Passoni, E. Davoli, E. Fattore, A. Maspero, G. Palmisano, E. Zanardini, S. Borin, and A. Di Guardo, Identification of sulfonated and hydroxy-sulfonated PCB metabolites in soil: New classes of intermediate products of PCB degradation? Environ. Sci. Technol. (2019). doi:10.1021/acs.est.9b03010.
  • E. Karanasios, N.G. Tsiropoulos, D.G. Karpouzas, and C. Ehaliotis, Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in Southern Europe, J Agric. Food Chem. 58 (2010), pp. 9147–9156. doi:10.1021/jf1011853.
  • C. Zhang, Y. Du, X.-Q. Tao, K. Zhang, D.-S. Shen, and -Y.-Y. Long, Dechlorination of polychlorinated biphenyl-contaminated soil via anaerobic composting with pig manure, J. Hazard. Mater. 261 (2013), pp. 826–832. doi:10.1016/j.jhazmat.2013.05.060.
  • D. Baldantoni, R. Morelli, A. Bellino, M.V. Prati, A. Alfani, and F. De Nicola, Anthracene and benzo(a)pyrene degradation in soil is favoured by compost amendment: Perspectives for a bioremediation approach, J. Hazard. Mater. 339 (2017), pp. 395–400. doi:10.1016/j.jhazmat.2017.06.043.
  • G. Marchal, K.E.C. Smith, A. Rein, A. Winding, L. Wollensen de Jonge, S. Trapp, and U.G. Karlson, Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil, Environ. Pollut. 181 (2013), pp. 200–210. doi:10.1016/j.envpol.2013.06.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.