516
Views
17
CrossRef citations to date
0
Altmetric
Articles

Application of Interspecies Correlation Estimation (ICE) models and QSAR in estimating species sensitivity to pesticides

&
Pages 1-18 | Received 16 Oct 2019, Accepted 26 Oct 2019, Published online: 14 Nov 2019

References

  • K.M. Nienstedt, T.C.M. Brock, J. van Wensem, M. Montforts, A. Hart, A. Aagaard, A. Alix, J. Boesten, S.K. Bopp, C. Brown, E. Capri, V. Forbes, H. Köpp, M. Liess, R. Luttik, L. Maltby, J.P. Sousa, F. Streissl, and R. Hardy, Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides, Sci. Tot. Environ. 415 (2012), pp. 31–38. doi:10.1016/j.scitotenv.2011.05.057.
  • S. Belanger, M.G. Barron, P. Craig, S. Dyer, M. Galay-Burgos, M. Hamer, A. Hart, S. Marshall, L. Posthuma, S. Raimondo, and P. Whitehouse, Future needs and recommendations in the development of Species Sensitivity Distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures, Integrat. Environ. Assess. Manag. 13 (2017), pp. 664–674. doi:10.1002/ieam.1841.
  • National Research Council, Assessing Risks to Endangered and Threatened Species from Pesticides, National Academies Press, Washington DC, 2013.
  • S. Raimondo, D.N. Vivian, C. Delos, and M.G. Barron, Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment, Environ. Toxicol. Chem. 27 (2008), pp. 2599–2607. doi:10.1897/08-157.1.
  • J.J. Villaverdes, B. Sevilla-Morán, C. López-Goti, J.L. Alonso-Prados, and P. Sandin-España, Computational methodologies for the risk assessment of pesticides in the European Union, J. Agric. Food Chem. 65 (2017), pp. 2017–2018. doi:10.1021/acs.jafc.7b00516.
  • H. Sanderson, D.J. Johnson, C.J. Wilson, R.A. Brain, and K.R. Solomon, Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids, and algae by ECOSAR screening, Toxicol. Lett. 144 (2003), pp. 383–395. doi:10.1016/S0378-4274(03)00257-1.
  • S. Raimondo, C.R. Jackson, and M.G. Barron, Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species, Environ. Sci. Technol. 44 (2010), pp. 7711–7716. doi:10.1021/es101630b.
  • S. Raimondo, P. Mineau, and M.G. Barron, Estimation of chemical toxicity to wildlife species using interspecies correlation models, Environ. Sci. Technol. 41 (2007), pp. 5888–5894. doi:10.1021/es070359o.
  • S. Raimondo, C.R. Jackson, and M.G. Barron, Web-based Interspecies Correlation Estimation (Web-ICE) for acute toxicity: User manual. Version 3.3, EPA/600/R-15/192, US Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 2015.
  • ASTM, Standard guide of conducting static toxicity tests with microalgae, ASTM E1218-04E1, American Society for Testing and Materials, West Conschohocken, PA, 2004.
  • ASTM, Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians, ASTM E729-96, American Society for Testing and Materials, West Conshohocken, PA, 2014.
  • US EPA, Aquatic invertebrate acute toxicity test, Freshwater Daphnid, OCSPP 850-1010, Washington, DC, 2016.
  • US EPA, Freshwater and saltwater fish acute toxicity test, OCSPP 850-1075, 2016.
  • M.M. Willming, C.R. Lilavois, M.G. Barron, and S. Raimondo, Acute toxicity prediction to threatened and endangered species using Interspecies Correlation Estimation (ICE) models, Environ. Sci. Technol. 50 (2016), pp. 10700–10707. doi:10.1021/acs.est.6b03009.
  • J.L. Brill, S.E. Belanger, J. Chaney, S.D. Dyer, S. Raimondo, M.G. Barron, and C.A. Pittinger, Development of algal Interspecies Correlation Estimation (ICE) models for chemical hazard assessment, Environ. Toxicol. Chem. 35 (2016), pp. 2368–2378. doi:10.1002/etc.3375.
  • US EPA, ECOTOX user guide: ECOTOXicology knowledgebase system. Version 5.0. Available at http:/www.epa.gov/ecotox/ (accessed September 2014), 2014.
  • US EPA, National recommended water quality criteria, EPA-822-R-02-047, US Environmental Protection Agency, Washington, DC, 2002.
  • F.L. Mayer and M.R. Ellersieck, Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals, Publication 160, U.S. Fish and Wildlife Service, Washington, DC, 1986.
  • C.D. Ivey, J. Besser, C.G. Ingersoll, N. Wang, D.C. Rogers, and S. Raimondo, Acute sensitivity of the vernal pool fairy shrimp, Branchinecta lynchi (Anostraca: Branchinectidae), and surrogate species to 10 chemicals, Environ. Toxicol. Chem. 36 (2017), pp. 797–806. doi:10.1002/etc.3723.
  • N. Wang, C.D. Ivey, C.G. Ingersoll, W.G. Brumbaugh, D. Alvarez, E.J. Hammer, C.R. Bauer, T. Augspurger, S. Raimondo, and M.C. Barnhart, Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action, Environ. Toxicol. Chem. 36 (2017), pp. 786–796. doi:10.1002/etc.3642.
  • OECD, Test guideline for testing of chemicals - Freshwater alga and cyanobacteria growth inhibition test, OECD Test Guideline 201, Organization for Economic Cooperation and Development, Paris, France, 2006.
  • R.H. Hudson, R.K. Tucker, and M.A. Haegele, Handbook of toxicity of pesticides to wildlife, Resource Publ. 153, United States Fish and Wildlife Service, Washington, DC, 1984.
  • E.W. Shafer Jr and W.A. Bowles Jr, Toxicity, repellency or phototoxicity of 979 chemicals to birds, mammals and plants, Research Report No. 04-01, United States Department of Agriculture, Fort Collins, CO, 2004.
  • E.W. Shafer Jr, W.A. Bowles Jr, and J. Hurlbut, The acute oral toxicity, repellency and hazard potential of 998 chemicals to one or more species of wild and domestic birds, Arch. Environ. Contam. Toxicol. 12 (1983), pp. 355–382.
  • E.W. Shafer Jr and W.A. Bowles Jr, Acute oral toxicity and repellency of 933 chemicals to house and deer mice, Arch. Environ. Contam. Toxicol. 14 (1985), pp. 111–129. doi:10.1007/BF01055769.
  • G.J. Smith, Pesticide use and toxicology in relation to wildlife: Organophosphorus and carbamate compounds, Resource Publication 170, United States Department of the Interior, Washington, DC, 1987.
  • A. Baril, B. Jobin, P. Mineau, and B.T. Collins, A consideration of inter-species variability in the use of the median lethal dose (LD50) in avian risk assessment, Technical Report No. 216, Canada Wildlife Service, Ottawa, Canada, 1994.
  • P. Mineau, A. Baril, B.T. Collins, J. Duffe, G. Joerman, and R. Luttik, Pesticide acute toxicity reference values for birds, Rev. Environ. Contam. Toxicol. 170 (2001), pp. 13–74.
  • M.G. Barron, C.R. Jackson, and T. Martin, MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development, Aquat. Toxicol. 161 (2015), pp. 102–107. doi:10.1016/j.aquatox.2015.02.001.
  • S. Raimondo, D. Vivian, and M.G. Barron, Web-based Interspecies Correlation Estimation (Web-ICE) for acute toxicity: User manual, Version 2.0, EPA/600/R-07-071, Gulf Breeze, FL, 2007.
  • S. Raimondo, D.N. Vivian, and M.G. Barron, Web-based Interspecies Correlation Estimation (Web-ICE) for acute toxicity: User manual. Version 3.1, EPA/600/R-10/004, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, FL, 2010.
  • S. Raimondo, C.R. Jackson, and M.G. Barron, Web-based Interspecies Correlation Estimation (Web-ICE) for acute toxicity: User manual. Version 3.2, EPA/600/R-12/603, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, FL, 2013.
  • D. De Zwart, Observed regularities in Species Sensitivity Distributions for aquatic species, in Species Sensitivity Distributions in Ecotoxicology, L. Posthuma, G.W. Suter, and T.P. Traas, eds., Lewis Publishers, Boca Raton, FL, 2002, pp. 133–154.
  • M.G. Barron and S. Wharton, Survey of methodologies for developing media screening values for ecological risk assessment, Integrat. Environ. Assess. Manage. 1 (2005), pp. 320–332. doi:10.1002/ieam.5630010402.
  • C. Feng, F. Wu, W. Meng, S.D. Dyer, M. Fan, S. Raimondo, and M.G. Barron, Interspecies Correlation Estimation-applications in water quality criteria and ecological risk assessment, Environ. Sci.Technol. 47 (2013), pp. 11382–11383. doi:10.1021/es403933f.
  • J.A. Awkerman, S. Raimondo, and M.G. Barron, Development of Species Sensitivity Distributions for wildlife using interspecies toxicity correlation models, Environ. Sci. Technol. 42 (2008), pp. 3447–3452. doi:10.1021/es702861u.
  • S.D. Dyer, D.J. Versteeg, S.E. Belanger, J.G. Chaney, S. Raimondo, and M.G. Barron, Comparison of Species Sensitivity Distributions derived from interspecies correlation models to distributions used to derive water quality criteria, Environ. Sci. Technol. 42 (2008), pp. 3076–3083. doi:10.1021/es702302e.
  • J.A. Awkerman, S. Raimondo, C.R. Jackson, and M.G. Barron, Augmenting Species Sensitivity Distributions with interspecies toxicity estimation models, Environ. Toxicol. Chem. 33 (2014), pp. 688–695. doi:10.1002/etc.2456.
  • K. Sappington, G. Thursby, S. Raimondo, and M. Ruhman, Endosulfan: 2010 Environmental Fate and Ecological Risk Assessment, US Environmental Protection Agency, Washington, DC, US, 2010.
  • A. Schmolke, P. Thorbek, P. Chapman, and V. Grimm, Ecological models and pesticide risk assessment: Current modeling practice, Environ. Toxicol. Chem. 29 (2010), pp. 1006–1012. doi:10.1002/etc.v29:4.
  • US EPA, Biological evaluation chapters for malathion ESA assessment. Available at https://www.epa.gov/endangered-species/biological-evaluation-chapters-malathion-esa-assessment, 2016c.
  • US EPA, Biological evaluation chapters for diazinon ESA assessment. Available at https://www.epa.gov/endangered-species/biological-evaluation-chapters-diazinon-esa-assessment, 2016d.
  • US EPA, Biological evaluation chapters for chlorpyrifos ESA assessment. Available at https://www.epa.gov/endangered-species/biological-evaluation-chapters-chlorpyrifos-esa-assessment, 2016e.
  • M.G. Barron, C.R. Jackson, and J.A. Awkerman, Evaluation of in silico development of aquatic toxicity Species Sensitivity Distributions, Aquat. Toxicol. 116–117 (2012), pp. 1–7. doi:10.1016/j.aquatox.2012.02.006.
  • E.E. Kenaga, Test organisms and methods useful for early assessment of acute toxicity of chemicals, Environ. Sci. Technol. 12 (1978), pp. 1322–1329. doi:10.1021/es60147a001.
  • G.A. LeBlanc, Interspecies relationships in acute toxicity of chemicals to aquatic organisms, Environ. Toxicol. Chem. 3 (1984), pp. 47–60. doi:10.1002/etc.v3:1.
  • W. Slooff, J.A.M. van Oers, and D. de Zwart, Margins of uncertainty in ecotoxicological hazard assessment, Environ. Toxicol. Chem. 5 (1986), pp. 841–852. doi:10.1002/etc.v5:9.
  • F.L. Mayer, C.H. Deans, and A.G. Smith, Inter-taxa correlations for toxicity to aquatic organisms, EPA/600/X-87/332, US Environmental Protection Agency, Washington DC, 1987.
  • S. Raimondo, D.N. Vivian, and M.G. Barron, Standardizing acute toxicity data for use in ecotoxicological models: Influence of test type, life stage, and concentration reporting, Ecotoxicology 18 (2009), pp. 918–928. doi:10.1007/s10646-009-0353-y.
  • J.A. Awkerman, S. Raimondo, and M.G. Barron, Estimation of wildlife hazard levels using interspecies correlation models and standard laboratory rodent toxicity data, J. Toxicol. Environ. Health Part A 72 (2009), pp. 1604–1609. doi:10.1080/15287390903232491.
  • A.C. Bejarano and M.G. Barron, Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species, Environ. Sci. Technol. 48 (2014), pp. 4564–4572. doi:10.1021/es500649v.
  • A.C. Bejarano, S. Raimondo, and M.G. Barron, Framework for optimizing selection of Interspecies Correlation Estimation models to address species diversity gaps in an aquatic database, Environ. Sci. Technol. 51 (2017), pp. 8158–8165. doi:10.1021/acs.est.7b01493.
  • Minnesota Pollution Control Agency, Minnesota’s aquatic toxicity profiles; Methods and application, Doc. Num. wq-cec2-02, Saint Paul, MN, 2017. https://www.pca.state.mn.us/sites/default/files/wq-cec2-02.pdf.
  • European Centre for Ecotoxicology and Toxicology of Chemicals, Estimating toxicity thresholds for aquatic ecological communities from sensitivity distributions, Workshop Report No. 28. Amsterdam, The Netherlands, 2014. http://www.ecetoc.org/wp-content/uploads/2014/12/ECETOC_WR_28.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.