524
Views
0
CrossRef citations to date
0
Altmetric
Articles

QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation

, , , &
Pages 49-72 | Received 08 Nov 2019, Accepted 10 Nov 2019, Published online: 26 Nov 2019

References

  • EC (European Commission), Regulation (EC) No 1107/2009, Off. J. Eur. Union L309 (2009), pp. 1–50.
  • EC (European Commission), Directive 2009/128/EC, Off. J. Eur. Union L309 (2009), pp. 71–86. doi:10.3000/17252555.L_2009.309.eng
  • D. Chandler, A.S. Bailey, G.M. Tatchell, G. Davidson, J. Greaves, and W.P. Grant, The development, regulation and use of biopesticides for integrated pest management, Philos. Trans. R. Soc. Lond. B 366 (2011), pp. 1987–1998. doi:10.1098/rstb.2010.0390
  • J.J. Villaverde, B. Sevilla-Morán, P. Sandín-España, C. López-Goti, and J.L. Alonso-Prados, Challenges of biopesticides under the European regulation (EC) No. 1107/2009: An overview of new trends in residue analysis, in Studies in Natural Products Chemistry, F. Atta-ur-Rahman, ed., Elsevier, Oxford, 2014, pp. 437–482. doi:10.1016/b978-0-444-63430-6.00015-1
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, J.L. Alonso-Prados, and P. Sandín-España, Computational methodologies for the risk assessment of pesticides in the European Union, J. Agric. Food Chem. 65 (2017), pp. 2017–2018. doi:10.1021/acs.jafc.7b00516
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, L.J. Alonso-Prados, and P. Sandín-España, Computational-based study of QuEChERS extraction of cyclohexanedione herbicide residues in soil by chemometric modeling, Molecules 23 (2018), pp. 1–16. doi:10.3390/molecules23082009
  • J.J. Villaverde, J. Li, P. Ligero, M. Ek, and A. de Vega, Mild peroxyformic acid fractionation of Miscanthus x giganteus bark. Behaviour and structural characterization of lignin, Ind. Crops Prod. 35 (2012), pp. 261–268. doi:10.1016/j.indcrop.2011.07.013
  • J.J. Villaverde, P. Ligero, and A.D. Vega, Bleaching Miscanthus x giganteus acetosolv pulps with hydrogen peroxide/acetic acid. Part 1: Behaviour in aqueous alkaline media, Biores. Technol. 100 (2009), pp. 4731–4735. doi:10.1016/j.biortech.2009.04.052
  • E. Benfenati, F. Como, M. Manzo, D. Gadaleta, A. Toropov, and A. Toropova, Developing innovative in silico models with EFSA’s OpenFoodTox database, EFSA Support. Publ. 14 (2017), pp. 1206E. doi:10.2903/sp.efsa.2017.EN-1206
  • EFSA, Modern methodologies and tools for human hazard assessment of chemicals, EFSA J. 12 (2014), pp. 3638. doi:10.2903/j.efsa.2014.3638
  • WUR, RIVM, and PBL, PesticideModels, Wageningen University and Research Centre, the National Institute of Public Health and the Environment and the Netherlands Environmental Assessment Agency. Available at www.pesticidemodels.eu (accessed November 2019).
  • Z. Li, Z. Hui, A. Haixin, H. Huan, L. Shimeng, Z. Jian, and L. Hongsheng, Applications of machine learning methods in drug toxicity prediction, Curr. Top. Med. Chem. 18 (2018), pp. 987–997. doi:10.2174/1568026618666180727152557
  • C. Merlot, Computational toxicology—A tool for early safety evaluation, Drug Discov. Today 15 (2010), pp. 16–22. doi:10.1016/j.drudis.2009.09.010
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, J.L. Alonso-Prados, and P. Sandín-España, Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework, Sci. Tot. Environ. 634 (2018), pp. 1530–1539. doi:10.1016/j.scitotenv.2018.04.033
  • J. Devillers, Methods for building QSARs, Methods Mol. Biol. 930 (2013), pp. 3–27. doi:10.1007/978-1-62703-059-5_1
  • EFSA, OECD metapath — incorporation of pesticide residue data, European Food Safety Authority. Available at https://etendering.ted.europa.eu/cft/cft-display.html?cftId=5307 (accessed November 2019).
  • E.J. Calabrese, L.A. Baldwin, P.T. Kostecki, and T.L. Potter, A toxicologically based weight-of-evidence methodology for the relative ranking of chemicals of endocrine disruption potential, Regul. Toxicol. Pharmacol. 26 (1997), pp. 36–40. doi:10.1006/rtph.1997.1115
  • F. Pedersen, J. de Bruijn, S. Munn, and K. van Leeuwen, Assessment of additional testing needs under REACH effects of (Q)SARS, risk based testing and voluntary industry initiatives, EC 9 (2003), pp. 1–36.
  • EC (European Commission), Regulation (EC) No 1907/2006, Off. J. Eur. Union L396 (2006), pp. 1–101.
  • S. Scholz, E. Sela, L. Blaha, T. Braunbeck, M. Galay-Burgos, M. García-Franco, J. Guinea, N. Klüver, K. Schirmer, K. Tanneberger, M. Tobor-Kapłon, H. Witters, S. Belanger, E. Benfenati, S. Creton, M.T.D. Cronin, R.I.L. Eggen, M. Embry, D. Ekman, A. Gourmelon, M. Halder, B. Hardy, T. Hartung, B. Hubesch, D. Jungmann, M.A. Lampi, L. Lee, M. Léonard, E. Küster, A. Lillicrap, T. Luckenbach, A.J. Murk, J.M. Navas, W. Peijnenburg, G. Repetto, E. Salinas, G. Schüürmann, H. Spielmann, K.E. Tollefsen, S. Walter-Rohde, G. Whale, J.R. Wheeler, and M.J. Winter, A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment, Regul. Toxicol. Pharmacol. 67 (2013), pp. 506–530. doi:10.1016/j.yrtph.2013.10.003
  • T. Hartung and C. Rovida, Chemical regulators have overreached, Nature 460 (2009), pp. 1080–1081. doi:10.1038/4601080a
  • EC (European Commission), Directive 2010/63/EC, Off. J. Eur. Union L276 (2010), pp. 33–79. doi:10.3000/17252555.L_2010.276.eng
  • E. Benfenati, G. Gini, S. Hoffmann, and R. Luttik, Comparing in vivo, in vitro and in silico methods and integrated strategies for chemical assessment: Problems and prospects, Altern. Lab. Anim. 38 (2010), pp. 153–166. doi:10.1177/026119291003800201
  • C. Menzie, M.H. Henning, J. Cura, K. Finkelstein, J. Gentile, J. Maughan, D. Mitchell, S. Petron, B. Potocki, S. Svirsky, and P. Tyler, Special report of the Massachusetts weight-of-evidence workgroup A weight-of-evidence approach for evaluating ecological risks, Hum. Ecol. Risk Assess. 2 (1996), pp. 277–304. doi:10.1080/10807039609383609
  • K. Schirmer, Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish, Toxicology 224 (2006), pp. 163–183. doi:10.1016/j.tox.2006.04.042
  • A. Castaño, N. Bols, T. Braunbeck, P. Dierickx, M. Halder, B. Isomaa, K. Kawahara, L.E.J. Lee, C. Mothersill, P. Pärt, G. Repetto, J.R. Sintes, H. Rufli, R. Smith, C. Wood, and H. Segner, The use of fish cells in ecotoxicology: The report and recommendations of ECVAM workshop 47, Altern. Lab. Anim. 31 (2003), pp. 317–351. doi:10.1177/026119290303100314
  • L. Galbis-Martínez, M.L. Fernández-Cruz, L. Alte, A. Valdehita, I. Rucandio, and J.M. Navas, Development of a new tool for the long term in vitro ecotoxicity testing of nanomaterials using a rainbow-trout cell line (RTL-W1), Toxicol. in Vitro 50 (2018), pp. 305–317. doi:10.1016/j.tiv.2018.04.007
  • A. Punt, W. Brand, A.J. Murk, A.P. van Wezel, M. Schriks, and M.B. Heringa, Effect of combining in vitro estrogenicity data with kinetic characteristics of estrogenic compounds on the in vivo predictive value, Toxicol. in Vitro 27 (2013), pp. 44–51. doi:10.1016/j.tiv.2012.09.014
  • J.W. Nichols, I.R. Schultz, and P.N. Fitzsimmons, In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish: I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models, Aquat. Toxicol. 78 (2006), pp. 74–90. doi:10.1016/j.aquatox.2006.01.017
  • K. Fent, Fish cell lines as versatile tools in ecotoxicology: Assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples, Toxicol. in Vitro 15 (2001), pp. 477–488. doi:10.1016/S0887-2333(01)00053-4
  • T. Zahn, C. Hauck, J. Holzschuh, and T. Braunbeck, Acute and sublethal toxicity of seepage waters from garbage dumps to permanent cell lines and primary cultures of hepatocytes from rainbow trout (Oncorhynchus mykiss): A novel approach to environmental risk assessment for chemicals and chemical mixtures, Zentralbl. Hyg. Umweltmed. 196 (1995), pp. 455–479.
  • A. Castaño, M.J. Cantarino, P. Castillo, and J.V. Tarazona, Correlations between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay, Chemosphere 32 (1996), pp. 2141–2157. doi:10.1016/0045-6535(96)00126-9
  • D. Young, T. Martin, R. Venkatapathy, and P. Harten, Are the chemical structures in your QSAR correct? QSAR Comb. Sci. 27 (2008), pp. 1337–1345. doi:10.1002/qsar.200810084
  • D. Fourches, E. Muratov, and A. Tropsha, Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research, J. Chem. Inf. Model. 50 (2010), pp. 1189–1204. doi:10.1021/ci100176x
  • J.J. Villaverde, P. Sandín-España, J.L. Alonso-Prados, A.M. Lamsabhi, and M. Alcamí, Computational study of the structure and degradation products of alloxydim herbicide, J. Phys. Chem. A 122 (2018), pp. 3909–3918. doi:10.1021/acs.jpca.8b00865
  • J.J. Villaverde, P. Sandín-España, J.L. Alonso-Prados, A.M. Lamsabhi, and M. Alcamí, Pesticide byproducts formation: Theoretical study of the protonation of alloxydim degradation products, Comput. Theor. Chem. 1143 (2018), pp. 9–19. doi:10.1016/j.comptc.2018.08.006
  • ILSI, International Life Sciences Institute. Available at https://ilsi.org (accessed November 2019).
  • HELSI, Health and Environmental Sciences Institute. Available at https://hesiglobal.org (accessed November 2019).
  • A. Takei, ILSI Health and Environmental Sciences Institute (HESI), global leader in advancing translational science to create science-based solutions for a sustainable, healthier world, Genes Environ. 37 (2015), pp. 1–6. doi:10.1186/s41021-015-0001-0
  • Lhasa, Lhasa Limited. Available at www.lhasalimited.org (accessed November 2019).
  • R.D. Combes and R.A. Rodford, The use of expert systems for toxicity prediction – Illustrated with reference to the DEREK program, in Predicting Chemical Toxicity and Fate, M.T.D. Cronin and D.J. Livingstone, eds.,CRC Press Boca Ratón, 2004, pp. 193–204.
  • IUCLID6, International Uniform ChemicaL Information Database, European Chemicals Agency in association with the OECD. Available at https://iuclid6.echa.europa.eu (accessed November 2019).
  • CRADAs, Cooperative research and development agreements, Food and Drug Administration (FDA). Available at www.fda.gov/science-research/cooperative-research-and-development-agreements-cradas/fda-cradas (accessed November 2019).
  • FDA, Food and drug administration. Available at www.fda.gov (accessed November 2019).
  • MultiCASE, MultiCASE Inc. Available at www.multicase.com (accessed November 2019).
  • OECD, Guidance Document on the Validation of (Quantitative)structure-activity Relationships [(Q)SAR] Models, Organisation for Economic Co-operation and Development, Paris, 2007.
  • K. Bellifa and S.M. Mekelleche, QSAR study of the toxicity of nitrobenzenes to Tetrahymena pyriformis using quantum chemical descriptors, Arab. J. Chem. 9 (2016), pp. S1683–S1689. doi:10.1016/j.arabjc.2012.04.031
  • J. Šarlauskas, E. Polmickaitė-Smirnova, N. Čėnas, K. Krikštopaitis, and Ž. Anusevičius, The QSAR study for antibacterial activity of structurally diverse nitroaromatics, Chemija 30 (2019), pp. 41–48. doi:10.6001/chemija.v30i1.3924
  • M. Larsson, B. Kumar Mishra, M. Tysklind, A. Linusson, and P.L. Andersson, On the use of electronic descriptors for QSAR modelling of PCDDs, PCDFs and dioxin-like PCBs, SAR QSAR Environ. Res. 24 (2013), pp. 461–479. doi:10.1080/1062936x.2013.791719
  • Z. Xi, Z. Yu, C. Niu, S. Ban, and G. Yang, Development of a general quantum-chemical descriptor for steric effects: Density functional theory based QSAR study of herbicidal sulfonylurea analogues, J. Comput. Chem. 27 (2006), pp. 1571–1576. doi:10.1002/jcc.20464
  • A.A. Toropov, D. Leszczynska, and J. Leszczynski, Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector, Comput. Biol. Chem. 31 (2007), pp. 127–128. doi:10.1016/j.compbiolchem.2007.02.002
  • A.R. Katritzky, O.V. Kulshyn, I. Stoyanova-Slavova, D.A. Dobchev, M. Kuanar, D.C. Fara, and M. Karelson, Antimalarial activity: A QSAR modeling using CODESSA PRO software, Bioorg. Med. Chem. 14 (2006), pp. 2333–2357. doi:10.1016/j.bmc.2005.11.015
  • E.B. Alencar Filho, A.A. Santos, and B.G. Oliveira, A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents, J. Mol. Struct. 1133 (2017), pp. 338–347. doi:10.1016/j.molstruc.2016.12.035
  • T. Puzyn and J. Falandysz, Application and comparison of different chemometric approaches in QSPR modelling of supercooled liquid vapour pressures for chloronaphthalenes, SAR QSAR Environ. Res. 18 (2007), pp. 299–313. doi:10.1080/10629360701303875
  • E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. Phys. 384 (1926), pp. 361–376. doi:10.1002/andp.19263840404
  • A. Dreuw and M. Head-Gordon, Single-reference ab initio methods for the calculation of excited states of large molecules, Chem. Rev. 105 (2005), pp. 4009–4037. doi:10.1021/cr0505627
  • L.B. Harding, S.J. Klippenstein, and A.W. Jasper, Ab initio methods for reactive potential surfaces, Phys. Chem. Chem. Phys. 9 (2007), pp. 4055–4070. doi:10.1039/B705390H
  • J. Pokluda, M. Černý, M. Šob, and Y. Umeno, Ab initio calculations of mechanical properties: Methods and applications, Prog. Mater. Sci. 73 (2015), pp. 127–158. doi:10.1016/j.pmatsci.2015.04.001
  • A.S. Christensen, T. Kubař, Q. Cui, and M. Elstner, Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications, Chem. Rev. 116 (2016), pp. 5301–5337. doi:10.1021/acs.chemrev.5b00584
  • W. Thiel, Semiempirical quantum-chemical methods in computational chemistry, in Theory and Applications of Computational Chemistry, C.E. Dykstra, G. Frenking, K.S. Kim, and G.E. Scuseria, eds., Elsevier, Amsterdam, 2005, pp. 559–580. doi:10.1016/B978-044451719-7/50064-0
  • J.J. Villaverde, C. López-Goti, M. Alcamí, A.M. Lamsabhi, J.L. Alonso-Prados, and P. Sandín-España, Quantum chemistry in environmental pesticide risk assessment, Pest Manag. Sci. 73 (2017), pp. 2199–2202. doi:10.1002/ps.4641
  • E.G. Hohenstein and C.D. Sherrill, Wavefunction methods for noncovalent interactions, WIREs Comput. Mol. Sci. 2 (2012), pp. 304–326. doi:10.1002/wcms.84
  • P. Fulde, Wavefunction methods in electronic-structure theory of solids, Adv. Phys. 51 (2002), pp. 909–948. doi:10.1080/00018730110116371
  • J. Callaway and N.H. March, Density functional methods: Theory and applications, in Solid State Physics, H. Ehrenreich, D. Turnbull, and F. Seitz, eds., Academic Press, London, 1984, pp. 135–221. doi:10.1016/S0081-1947(08)60313-6
  • R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
  • W. Koch and M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim, 2001. doi:10.1002/3527600043
  • A.J. Cohen, P. Mori-Sánchez, and W. Yang, Challenges for density functional theory, Chem. Rev. 112 (2012), pp. 289–320. doi:10.1021/cr200107z
  • V. Fock, Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems, Z. Physik 61 (1930), pp. 126–148. doi:10.1007/BF01340294
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964), pp. B864–B871. doi:10.1103/PhysRev.136.B864
  • T. Puzyn, N. Suzuki, M. Haranczyk, and J. Rak, Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? J. Chem. Inf. Model. 48 (2008), pp. 1174–1180. doi:10.1021/ci800021p
  • R. Hmamouchi, M. Larif, S. Chtita, A. Adad, M. Bouachrine, and T. Lakhlifi, Predictive modelling of the LD50 activities of coumarin derivatives using neural statistical approaches: Electronic descriptor-based DFT, J. Taibah Univ. Sci. 10 (2016), pp. 451–461. doi:10.1016/j.jtusci.2015.06.013
  • M. Ghamali, S. Chtita, A. Aouidate, A. Ghaleb, M. Bouachrine, and T. Lakhlifi, Combining DFT and QSAR computation to predict the interaction of flavonoids with the GABA (A) receptor using electronic and topological descriptors, J. Taibah Univ. Sci. 11 (2017), pp. 422–433. doi:10.1016/j.jtusci.2016.06.005
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138. doi:10.1103/PhysRev.140.A1133
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi:10.1103/PhysRevLett.77.3865
  • Y. Wang and J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling, Phys. Rev. B 44 (1991), pp. 13298–13307. doi:10.1103/PhysRevB.44.13298
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), pp. 785–789. doi:10.1103/PhysRevB.37.785
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), pp. 3098–3100. doi:10.1103/PhysRevA.38.3098
  • S.H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58 (1980), pp. 1200–1211. doi:10.1139/p80-159
  • P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch, Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (1994), pp. 11623–11627. doi:10.1021/j100096a001
  • A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993), pp. 5648–5652. doi:10.1063/1.464913
  • S. Kaur, V. Kumar, M. Chawla, L. Cavallo, A. Poater, and N. Upadhyay, Pesticides curbing soil fertility: Effect of complexation of free metal ions, Front. Chem. 5 (2017), pp. 43. doi:10.3389/fchem.2017.00043
  • K. Jiang, N. Zhang, H. Zhang, J. Wang, and M. Qian, Investigation on the gas-phase decomposition of trichlorfon by GC-MS and theoretical calculation, PLoS One 10 (2015), pp. e0121389. doi:10.1371/journal.pone.0121389
  • I.V. Tetko, I. Sushko, A.K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Öberg, R. Todeschini, D. Fourches, and A. Varnek, Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection, J. Chem. Inf. Model. 48 (2008), pp. 1733–1746. doi:10.1021/ci800151m
  • H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Öberg, P. Dao, A. Cherkasov, and I.V. Tetko, Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis, J. Chem. Inf. Model. 48 (2008), pp. 766–784. doi:10.1021/ci700443v
  • R.G. Parr, R.A. Donnelly, M. Levy, and W.E. Palke, Electronegativity: The density functional viewpoint, J. Chem. Phys. 68 (1978), pp. 3801–3807. doi:10.1063/1.436185
  • R.G. Parr and R.G. Pearson, Absolute hardness: Companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983), pp. 7512–7516. doi:10.1021/ja00364a005
  • R.G. Parr, L.V. Szentpály, and S. Liu, Electrophilicity index, J. Am. Chem. Soc. 121 (1999), pp. 1922–1924. doi:10.1021/ja983494x
  • L.R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, Applications of the conceptual density functional theory indices to organic chemistry reactivity, Molecules 21 (2016), pp. 748. doi:10.3390/molecules21060748
  • A. Chakraborty, S. Duley, S. Giri, and P.K. Chattaraj, An understanding of the origin of chemical reactivity from a conceptual DFT approach, in A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Materials Sciences, N. Sukumar, ed., Wiley New York, 2012, pp. 157–201. doi:10.1002/9781118431740.ch7
  • Reenu and Vikas, Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna, J. Mol. Graph. Model. 61 (2015), pp. 89–101. doi:10.1016/j.jmgm.2015.06.009
  • Vikas, Reenu, and Chayawan, Does electron-correlation has any role in the quantitative structure–Activity relationships? J. Mol. Graph. Model. 42 (2013), pp. 7–16. doi:10.1016/j.jmgm.2013.02.005
  • Reenu and Vikas, Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100, Ecotoxicol. Environ. Saf. 101 (2014), pp. 42–50. doi:10.1016/j.ecoenv.2013.11.020
  • Reenu and Vikas, Role of exchange and correlation in the real external prediction of mutagenicity: Performance of hybrid and meta-hybrid exchange–Correlation functionals, RSC Adv. 5 (2015), pp. 29238–29251. doi:10.1039/C4RA14262D
  • Vikas and Chayawan, Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors, Chemosphere 95 (2014), pp. 448–454. doi:10.1016/j.chemosphere.2013.09.093
  • Chayawan and Vikas, Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of log SW, log KOA, and log KOW with electron-correlation, J. Hazard. Mater. 296 (2015), pp. 68–81. doi:10.1016/j.jhazmat.2015.04.028
  • Vikas and Chayawan, Single-descriptor based quantum-chemical QSPRs for physico-chemical properties of polychlorinated-dibenzo-p-dioxins and -dibenzo-furans (PCDD/Fs): Exploring the role of electron-correlation, Chemosphere 118 (2015), pp. 239–245. doi:10.1016/j.chemosphere.2014.08.072
  • J.H. Al-Fahemi, The use of quantum-chemical descriptors for predicting the photoinduced toxicity of PAHs, J. Mol. Model. 18 (2012), pp. 4121–4129. doi:10.1007/s00894-012-1417-0
  • E. Eroglu and H. Türkmen, A DFT-based quantum theoretic QSAR study of aromatic and heterocyclic sulfonamides as carbonic anhydrase inhibitors against isozyme, CA-II, J. Mol. Graph. Model. 26 (2007), pp. 701–708. doi:10.1016/j.jmgm.2007.03.015
  • S. Pan, A.K. Gupta, V. Subramanian, and P.K. Chattaraj, Quantitative structure-activity/property/toxicity relationships through conceptual density functional theory-based reactivity descriptors, in Pharmaceutical Sciences: Breakthroughs in Research and Practice, I.R.M. Association, ed., IGI Global, Hershey, 2017, pp. 1517–1572. doi:10.4018/978-1-5225-1762-7.ch058
  • S. Pan, A. Gupta, D. Roy, R. Sharma, V. Subramanian, A. Mitra, and P. Chattaraj, Application of conceptual density functional theory in developing QSAR models and their usefulness in the prediction of biological activity and toxicity of molecules: QSAR in medicinal chemistry, in Chemometrics Applications and Research: QSAR in Medicinal Chemistry, A.G. Mercader, P.R. Duchowicz, and P.M. Sivakumar, eds., Apple Academic Press, New York, 2016, pp. 183–214. doi:10.1201/b19853-7
  • A. Chakraborty, S. Pan, and P.K. Chattaraj, Biological activity and toxicity: A conceptual DFT approach, in Applications of Density Functional Theory to Biological and Bioinorganic Chemistry, M.V. Putz and D.M.P. Mingos, eds., Springer, Berlin, 2013, pp. 143–179. doi:10.1007/978-3-642-32750-6_5
  • G. Santanab, C. Arindam, G. Ashutosh Kumar, R. Debesh Ranjan, V. Ramadoss, P. Ramakrishnan, S. Venkatesan, and C. Pratim, Modeling ecotoxicity as applied to some selected aromatic compounds: A conceptual DFT based quantitative-structure-toxicity-relationship (QSTR) analysis, in Advanced Methods and Applications in Chemoinformatics: Research Progress and New Applications, E.A. Castro and A.K. Haghi, eds., IGI Global, Hershey, 2012, pp. 1–24. doi:10.4018/978-1-60960-860-6.ch001
  • OECD, Revised Guidance Document on Developing and Assessing Adverse Outcome Pathways, Organisation for Economic Co-operation and Development, Paris, 2017.
  • E. Berggren, P. Amcoff, R. Benigni, K. Blackburn, E. Carney, M. Cronin, H. Deluyker, F. Gautier, R.S. Judson, G.E.N. Kass, D. Keller, D. Knight, W. Lilienblum, C. Mahony, I. Rusyn, T. Schultz, M. Schwarz, G. Schüürmann, A. White, J. Burton, A.M. Lostia, S. Munn, and A. Worth, Chemical safety assessment using read-across: Assessing the use of novel testing methods to strengthen the evidence base for decision making, Environ. Health Perspect. 123 (2015), pp. 1232–1240. doi:10.1289/ehp.1409342
  • F. Metruccio, I. Castelli, C. Civitella, C. Galbusera, F. Galimberti, L. Tosti, and A. Moretto, Compilation of a database, specific for the pesticide active substance and their metabolites, comprising the main genotoxicity endpoints, EFSA Support. Publ. 14 (2017), pp. 1229E. doi:10.2903/sp.efsa.2017.EN-1229
  • EC (European Commission), Regulation (EC) No 2018/605, Off. J. Eur. Union L101 (2018), pp. 33–36.
  • ECHA, QSARs and Grouping of Chemicals, in Guidance on Information Requirements and Chemical Safety Assessment, European Chemicals Agency, Helsinki, 2008, pp. 1–134.
  • ECHA, Practical Guide 5: How to Use and Report (Q)sars, European Chemicals Agency, Helsinki, 2016.
  • ECHA, Practical Guide: How to Use Alternatives to Animal Testing to Fulfil Your Information Requirements for REACH Registration, European Chemicals Agency, Helsinki, 2016.
  • JRC, Joint Research Centre. Available at https://ec.europa.eu/jrc/en/eurl/ecvam (accessed November 2019).
  • JRC, Applicability of QSAR analysis to the evaluation of the toxicological relevance of metabolites and degradates of pesticide active substances for dietary risk assessment, EFSA Support. Publ. 7 (2010), pp. 50E. doi:10.2903/sp.efsa.2010.EN-50
  • B. Sevilla-Morán, L. Calvo, C. López-Goti, J.L. Alonso-Prados, and P. Sandín-España, Photodegradation behaviour of sethoxydim and its comercial formulation Poast® under environmentally-relevant conditions in aqueous media. Study of photoproducts and their toxicity, Chemosphere 168 (2017), pp. 501–507. doi:10.1016/j.chemosphere.2016.11.026
  • P. Sandín-España, B. Sevilla-Morán, C. López-Goti, M.M. Mateo-Miranda, and J.L. Alonso-Prados, Rapid photodegradation of clethodim and sethoxydim herbicides in soil and plant surface model systems, Arab. J. Chem. 9 (2016), pp. 694–703. doi:10.1016/j.arabjc.2015.04.007
  • B. Sevilla-Morán, M.M. Mateo-Miranda, J.L. Alonso-Prados, J.M. García-Baudín, and P. Sandín-España, Sunlight transformation of sethoxydim-lithium in natural waters and effect of humic acids, Int. J. Environ. Anal. Chem. 90 (2010), pp. 487–496. doi:10.1080/03067310903199500
  • J.J. Villaverde, I. Santín-Montanyá, B. Sevilla-Morán, J. Alonso-Prados, and P. Sandín-España, Assessing the effects of alloxydim phototransformation products by QSAR models and a phytotoxicity study, Molecules 23 (2018), pp. 993. doi:10.3390/molecules23050993
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, L. Calvo, J.L. Alonso-Prados, and P. Sandín-España, Photolysis of clethodim herbicide and a formulation in aquatic environments: Fate and ecotoxicity assessment of photoproducts by QSAR models, Sci. Tot. Environ. 615 (2018), pp. 643–651. doi:10.1016/j.scitotenv.2017.09.300
  • A. Worth, A. Bassan, A. Gallegos, T. Netzeva, G. Patlewicz, M. Pavan, I. Tsakovska, and M. Vracko, The Characterisation of (Quantitative) Structure-Activity Relationships: Preliminary Guidance, European Commission, Ispra, 2005.
  • ECETOC, Category approaches, read-across, (Q)SAR, Technical Report No. 116, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 2012.
  • ECETOC, Alternative testing approaches in environmental safety assessment, Technical Report No. 97, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 2005.
  • G. Patlewicz, N. Ball, E.D. Booth, E. Hulzebos, E. Zvinavashe, and C. Hennes, Use of category approaches, read-across and (Q)SAR: General considerations, Regul. Toxicol. Pharmacol. 67 (2013), pp. 1–12. doi:10.1016/j.yrtph.2013.06.002
  • ECETOC, (Q)SARs: Evaluation of the commercially available software for human health and environmental endpoints with respect to chemical managment applications, Technical Report No. 89, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 2003.
  • OECD, Report of the Workshop on Using Mechanistic Information in Forming Chemical Categories, Organisation for Economic Co-operation and Development, Arlington, 2010.
  • OECD, QSAR toolbox, Organisation for Economic Co-operation and Development. Available at https://qsartoolbox.org (accessed November 2019).
  • OECD, The OECD QSAR toolbox, Organisation for Economic Co-operation and Development. www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm#Guidance_Documents_and_Training_Materials_for_Using_the_Toolbox (accessed November 2019).
  • OECD, (Q)SARs: Guidance documents and reports, Organisation for Economic Co-operation and Development. Available at www.oecd.org/chemicalsafety/risk-assessment/guidancedocumentsandreportsrelatedtoqsars.htm (accessed November 2019).
  • OECD, Report of the Workshop on Structural Alerts for the OECD (Q)SAR Application Toolbox, Organisation for Economic Co-operation and Development, Paris, 2009.
  • C. Kneuer, A. Charistou, P. Craig, D. Eleftheriadou, N. Engel, M. Kjaerstad, S. Krishnan, V. Laskari, K. Machera, D. Nikolopoulou, C. Pieper, E. Schoen, E. Spilioti, and H. Buist, Applicability of in silico tools for the prediction of dermal absorption for pesticides, EFSA Support. Publ. 15 (2018), pp. 1493E. doi:10.2903/sp.efsa.2018.EN-1493
  • R. Benigni, C. Laura Battistelli, C. Bossa, A. Giuliani, E. Fioravanzo, A. Bassan, M. Fuart Gatnik, J. Rathman, C. Yang, and O. Tcheremenskaia, Evaluation of the applicability of existing (Q)SAR models for predicting the genotoxicity of pesticides and similarity analysis related with genotoxicity of pesticides for facilitating of grouping and read across, EFSA Support. Publ. 16 (2019), pp. 1598E. doi:10.2903/sp.efsa.2019.EN-1598
  • A. Bassan, E. Fioravanzo, M. Pavan, and M. Stocchero, Applicability of physicochemical data, QSARs and read-across in threshold of toxicological concern assessment, EFSA Support. Publ. 8 (2011), pp. 159E. doi:10.2903/sp.efsa.2011.EN-159
  • A. Worth, M. Fuart-Gatnik, S. Lapenna, and R. Serafimova, Applicability of QSAR analysis in the evaluation of developmental and neurotoxicity effects for the assessment of the toxicological relevance of metabolites and degradates of pesticide active substances for dietary risk assessment, EFSA Support. Publ. 8 (2011), pp. 169E. doi:10.2903/sp.efsa.2011.EN-169
  • J. Devillers and H. Devillers, Prediction of acute mammalian toxicity from QSARs and interspecies correlations, SAR QSAR Environ. Res. 20 (2009), pp. 467–500. doi:10.1080/10629360903278651
  • J.D. Rasinger, F. Frenzel, A. Braeuning, and A. Lampen, Identification and evaluation of potentially mutagenic and carcinogenic food contaminants, EFSA J. 16 (2018), pp. e16085. doi:10.2903/j.efsa.2018.e16085
  • C. Zhao, E. Boriani, A. Chana, A. Roncaglioni, and E. Benfenati, A new hybrid system of QSAR models for predicting bioconcentration factors (BCF), Chemosphere 73 (2008), pp. 1701–1707. doi:10.1016/j.chemosphere.2008.09.033
  • A. Gissi, O. Nicolotti, A. Carotti, D. Gadaleta, A. Lombardo, and E. Benfenati, Integration of QSAR models for bioconcentration suitable for REACH, Sci. Tot. Environ. 456–457 (2013), pp. 325–332. doi:10.1016/j.scitotenv.2013.03.104
  • A. Hillebrecht, W. Muster, A. Brigo, M. Kansy, T. Weiser, and T. Singer, Comparative evaluation of in silico systems for Ames test mutagenicity prediction: Scope and limitations, Chem. Res. Toxicol. 24 (2011), pp. 843–854. doi:10.1021/tx2000398
  • E.J. Matthews, N.L. Kruhlak, R.D. Benz, J.F. Contrera, C.A. Marchant, and C. Yang, Combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for windows software to achieve high-performance, high-confidence, mode of action–Based predictions of chemical carcinogenesis in rodents, Toxicol. Mech. Methods 18 (2008), pp. 189–206. doi:10.1080/15376510701857379
  • P. Pradeep, R.J. Povinelli, S. White, and S.J. Merrill, An ensemble model of QSAR tools for regulatory risk assessment, J. Cheminform. 8 (2016), pp. 48. doi:10.1186/s13321-016-0164-0
  • F. Frenzel, T. Buhrke, I. Wenzel, J. Andrack, J. Hielscher, and A. Lampen, Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing, Arch. Toxicol. 91 (2017), pp. 3157. doi:10.1007/s00204-016-1924-3
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, J.L. Alonso-Prados, and P. Sandín-España, Contributions of computer-based chemical modeling technologies on the risk assessment and the environmental fate study of (nano)pesticides, in Environmental Concerns and Sustainable Development: Volume 1: Air, Water and Energy Resources, V. Shukla and N. Kumar, eds., Springer, Singapore, 2020, pp. 1–27. doi:10.1007/978-981-13-5889-0_1
  • WOS, ISI web of knowledge. Thomson Reuters. Available at https://apps.webofknowledge.com (accessed November 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.