462
Views
4
CrossRef citations to date
0
Altmetric
Articles

Exploring 2D-QSAR for prediction of beta-secretase 1 (BACE1) inhibitory activity against Alzheimer’s disease

, , ORCID Icon & ORCID Icon
Pages 87-133 | Received 25 Sep 2019, Accepted 17 Nov 2019, Published online: 23 Dec 2019

References

  • R. Vassar, D.M. Kovacs, R. Yan, and P.C. Wong, The β-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential, J. Neurosc. 29 (2009), pp. 12787–12794. doi:10.1523/JNEUROSCI.3657-09.2009.
  • N. Schaduangrat, V. Prachayasittikul, S. Choomwattana, P. Wongchitrat, K. Phopin, W. Suwanjang, A.A. Malik, B. Vincent, and C. Nantasenamat, Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer’s disease, Med. Res. Rev. 39 (2019), pp. 1730–1778. doi:10.1002/med.21563.
  • R.J. Vassar, BACE1, The beta-secretase enzyme: A leading therapeutic target for Alzheimer’s disease, Alzheimers Dement. 12 (2016), p. 162. doi:10.1016/j.jalz.2016.06.289.
  • J. Hardy and D.J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics, Science 297 (2002), pp. 353–356. doi:10.1126/science.1072994.
  • K.W. Menting and J.A. Claassen, β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease, Front. Aging. Neurosci. 6 (2014), p. 165. doi:10.3389/fnagi.2014.00165.
  • S. Kitazume, Y. Tachida, R. Oka, K. Shirotani, T.C. Saido, and Y. Hashimoto, Alzheimer’s β-secretase, β-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase, PNAS 98 (2001), pp. 13554–13559. doi:10.1073/pnas.241509198.
  • J.A. Hardy and G.A. Higgins, Alzheimer’s disease: The amyloid cascade hypothesis, Science 256 (1992), pp. 184–186. doi:10.1126/science.1566067.
  • R. Yan, M.J. Bienkowski, M.E. Shuck, H. Miao, M.C. Tory, A.M. Pauley, J.R. Brashler, N.C. Stratman, W.R. Mathews, A.E. Buhl, and D.B. Carter, Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity, Nature 402 (1999), pp. 533–537. doi:10.1038/990107.
  • A.K. Ghosh, S. Gemma, and J. Tang, β-Secretase as a therapeutic target for Alzheimer’s disease, Neurotherapeutics 5 (2008), pp. 399–408. doi:10.1016/j.nurt.2008.05.007.
  • G. Subramanian, B. Ramsundar, V. Pande, and R.A. Denny, Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches, J. Chem. Inf. Model. 56 (2016), pp. 1936–1949. doi:10.1021/acs.jcim.6b00290.
  • S.L. Cole and R. Vassar, The Alzheimer’s disease β-secretase enzyme, BACE1, Mol. Neurodegener. 2 (2007), p. 22. doi:10.1186/1750-1326-2-22.
  • S.J. Patey, E.A. Edwards, E.A. Yates, and J.E. Turnbull, Heparin derivatives as inhibitors of BACE-1, the Alzheimer’s β-secretase, with reduced activity against factor Xa and other proteases, J. Med. Chem. 49 (2006), pp. 6129–6132. doi:10.1021/jm051221o.
  • A. Kumar, S. Roy, S. Tripathi, and A. Sharma, Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis, J. Biomol. Struct. Dyn. 34 (2016), pp. 239–249. doi:10.1080/07391102.2015.1022603.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “rm2” metrics for judging quality of quantitative structure–Activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082. doi:10.1002/jcc.23231.
  • T. Puzyn, J. Leszczynski, and M.T. Cronin (eds.), Recent Advances in QSAR Studies: Methods and Applications, Vol. 8, Springer Science & Business Media, 2010. doi:10.1007/978-1-4020-9783-6.
  • M.B. Colovic, D.Z. Krstic, P.T.D. Lazarevic, A.M. Bondzic, and V.M. Vasic, Acetylcholinesterase inhibitors: Pharmacology and toxicology, Curr. Neuropharmacol. 11 (2013), pp. 315–335. doi:10.2174/1570159x11311030006.
  • P. Ambure and K. Roy, Understanding the structural requirements of cyclic sulfone hydroxyethylamines as hBACE1 inhibitors against Aβ plaques in Alzheimer’s disease: A predictive QSAR approach, RSC Adv. 6 (2016), pp. 28171–28186. doi:10.1039/C6RA04104C.
  • P. Jain and H.R. Jadhav, Quantitative structure activity relationship analysis of aminoimidazoles as BACE-I inhibitors, Med. Chem. Res. 22 (2013), pp. 1740–1746. doi:10.1007/s00044-012-0166-z.
  • T. Hossain, M.A. Islam, R. Pal, and A. Saha, Exploring structural requirement and binding interactions of β-amyloid cleavage enzyme inhibitors using molecular modeling techniques, Med. Chem. Res. 22 (2013), pp. 4766–4774. doi:10.1007/s00044-013-0481-z.
  • S. Chakraborty and S. Basu, Multi-functional activities of citrus flavonoid narirutin in Alzheimer’s disease therapeutics: An integrated screening approach and in vitro validation, Int. J. Biol. Macromol. 103 (2017), pp. 733–743. doi:10.1016/j.ijbiomac.2017.05.110.
  • M.K. Gilson, T. Liu, M.G. Baitaluk, G. Nicola, L. Hwang, and J. Chong, BindingDB: A public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res. 19 (2015), pp. 1045–1053. Available at https://www.bindingdb.org/bind/index.jsp.
  • S. Das, P.K. Ojha, and K. Roy, Multilayered variable selection in QSPR: A case study of modeling melting point of bromide ionic liquids, IJQSPR 2 (2017), pp. 106–124. doi:10.4018/IJQSPR.2017010108.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • J. Jiaranaikulwanitch, C. Boonyarat, V.V. Fokin, and O. Vajragupta, Triazolyl tryptoline derivatives as β-secretase inhibitors, Bioorg. Med. Chem. Lett. 20 (2010), pp. 6572–6576. doi:10.1016/j.bmcl.2010.09.043.
  • P. Nowak, D.C. Cole, A. Aulabaugh, J. Bard, R. Chopra, R. Cowling, K.Y. Fan, B. Hu, S. Jacobsen, M. Jani, and G. Jin, Discovery and initial optimization of 5, 5′-disubstituted aminohydantoins as potent β-secretase (BACE1) inhibitors, Bioorg. Med. Chem. Lett. 20 (2010), pp. 632–635. doi:10.1016/j.bmcl.2009.11.052.
  • M.S. Malamas, K. Barnes, Y. Hui, M. Johnson, F. Lovering, J. Condon, W. Fobare, W. Solvibile, J. Turner, Y. Hu, and E.S. Manas, Novel pyrrolyl 2-aminopyridines as potent and selective human β-secretase (BACE1) inhibitors, Bioorg. Med. Chem. Lett. 20 (2010), pp. 2068–2073. doi:10.1016/j.bmcl.2010.02.075.
  • G. Larbig and B. Schmidt, Synthesis of tetramic and tetronic acids as β-secretase inhibitors, J. Comb. Chem. 8 (2006), pp. 480–490. doi:10.1021/cc0600021.
  • Y. Niu, C. Ma, H. Jin, F. Xu, H. Gao, P. Liu, Y. Li, C. Wang, G. Yang, and P. Xu, The discovery of novel β‐Secretase inhibitors: Pharmacophore modeling, virtual screening, and docking studies, Chem. Bio. Drug Des. 79 (2012), pp. 972–980. doi:10.1111/j.1747-0285.2012.01367.x.
  • D.C. Cole, E.S. Manas, J.R. Stock, J.S. Condon, L.D. Jennings, A. Aulabaugh, R. Chopra, R. Cowling, J.W. Ellingboe, K.Y. Fan, and B.L. Harrison, Acylguanidines as small-molecule β-secretase inhibitors, J. Med. Chem. 49 (2006), pp. 6158–6161. doi:10.1021/jm0607451.
  • T.H. Al-Tel, R.A. Al-Qawasmeh, M.F. Schmidt, A. Al-Aboudi, S.N. Rao, S.S. Sabri, and W. Voelter, Rational design and synthesis of potent dibenzazepine motifs as β-secretase inhibitors, J. Med. Chem. 52 (2009), pp. 6484–6488. doi:10.1021/jm9008482.
  • Marvin ChemAxon Software Solutions and Services for Chemistry, Available at https://chemaxon.com/products/marvin
  • P. Ambure, J. Bhat, T. Puzyn, and K. Roy, Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: An in silico approach, J. Biomol. Struct. Dyn. 37 (2019), pp. 1282–1306. doi:10.1080/07391102.2018.1456975.
  • A. Mauri, V. Consonni, M. Pavan, and R. Todeschini, Dragon software: An easy approach to molecular descriptor calculations, Match 56 (2006), pp. 237–248. Available at http://www.talete.mi.it/products/dragon_description.htm.
  • C.W. Yap, PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Method and Principles in Medicinal Chemistry, Vol. 11, John Wiley & Sons, 2008.
  • H.S. Park and C.H. Jun, A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl. 36 (2009), pp. 3336–3341. doi:10.1016/j.eswa.2008.01.039.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • I.N. Minitab, MINITAB statistical software, Minitab Release 13 (2000). Available at http://www.minitab.com/en-us/products/minitab/.
  • K. Roy, On some aspects of validation of predictive quantitative structure–Activity relationship models, Expert Opin. Drug .v 2 (2007), pp. 1567–1577. doi:10.1517/17460441.2.12.1567.
  • A. Umetri, SIMCA-P for Windows, Graphical Software for Multivariate Process Modeling, Umea, Sweden, 1996. Available at https://umetrics.com/products/simca.
  • R.B. Aher and K. Roy, QSAR and pharmacophore modeling of diverse aminothiazoles and aminopyridines for antimalarial potency against multidrug-resistant Plasmodium falciparum, Med. Chem. Res. 23 (2014), pp. 4238–4249. doi:10.1007/s00044-014-0997-x.
  • D. Systemes, BIOVIA, Discovery Studio Modeling Environment, Release 4.5, Dassault Systemes, San Diego, CA, 2015. Available at https://www.3dsbiovia.com/.
  • H.J. Huang, C.C. Lee, and C.Y.C. Chen, In silico Investigation of traditional chinese medicine compounds to inhibit human histone deacetylase 2 for patients with Alzheimer’s disease, BioMed Res. Int. 2014 (2014), pp. 1–15. doi:10.1155/2014/741703.
  • S. Pal, V. Kumar, B. Kundu, D. Bhattacharya, N. Preethy, M.P. Reddy, and A. Talukdar, Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase i inhibitors, CSBJ 17 (2019), pp. 291–310. doi:10.1016/j.csbj.2019.02.006.
  • A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol. 247 (1995), pp. 536–540. doi:10.1016/S0022-2836(05)80134-2.
  • G. Wu, D.H. Robertson, C.L. Brooks, and M. Vieth, Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm, J. Comput. Chem. 24 (2003), pp. 1549–1562. doi:10.1002/jcc.10306.
  • P.L.A. Popelier and P.J. Smith, QSAR models based on quantum topological molecular similarity, Eur. J. Med. Chem. 41 (2006), pp. 862–873. doi:10.1016/j.ejmech.2006.03.004.
  • K. Roy and R.N. Das, The “ETA” indices in QSAR/QSPR/QSTR research, in pharmaceutical sciences: Breakthroughs in research and practice, IGI Global (2017), pp. 978–1011. doi:10.4018/978-1-5225-1762-7.ch038.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical listing/volume II: Appendices, References, Vol. 41, John Wiley & Sons, New Jersey, 2009.
  • P.A. Speck, V.V. Kleandrova, and V.J.A. Rojas, QSAR model toward the rational design of new agrochemical fungicides with a defined resistance risk using substructural descriptors, Mol. Divers. 15 (2011), pp. 901–909. doi:10.1007/s11030-011-9320-7.
  • B. Lei, J. Li, J. Lu, J. Du, H. Liu, and X. Yao, Rational prediction of the herbicidal activities of novel protoporphyrinogen oxidase inhibitors by quantitative structure activity relationship model based on docking-guided active conformation, J. Agr. Food. Chem. 57 (2009), pp. 9593–9598. doi:10.1021/jf902010g.
  • R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C.P. Varghese, and R.K. Agrawal, Validation of QSAR models-strategies and importance, RRJoDDD 3 (2011), pp. 511–519.
  • D. Gadaleta, G.F. Mangiatordi, M. Catto, A. Carotti, and O. Nicolotti, Applicability domain for QSAR models: Where theory meets reality, IJQSPR 1 (2016), pp. 45–63. doi:10.4018/IJQSPR.2016010102.
  • C. Yoo and M. Shahlaei, The applications of PCA in QSAR studies: A case study on CCR5 antagonists, Chem. Biol. Drug. Des. 9 (2018), pp. 137–152. doi:10.1111/cbdd.13064.
  • L.O. Killin, J.M. Starr, I.J. Shiue, and T.C. Russ, Environmental risk factors for dementia: A systematic review, BMC Geriatr. 16 (2016), p. 175. doi:10.1186/s12877-016-0342-y.
  • P.V. Moulton and W. Yang, Air pollution, oxidative stress, and Alzheimer’s disease, J. Environ. Res. Public Health (2012), p. 9. doi:10.1155/2012/472751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.