489
Views
13
CrossRef citations to date
0
Altmetric
Articles

Modelling of ready biodegradability based on combined public and industrial data sources

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 171-186 | Received 01 Oct 2019, Accepted 21 Nov 2019, Published online: 20 Dec 2019

References

  • P. Gramatica and E. Papa, Screening and ranking of POPs for global half-life: QSAR approaches for prioritization based on molecular structure, Environ. Sci. Technol. 41 (2007), pp. 2833–2839. doi:10.1021/es061773b.
  • M. Pavan and A.P. Worth, Review of estimation models for biodegradation, QSAR Comb. Sci. 27 (2008), pp. 32–40. doi:10.1002/(ISSN)1611-0218.
  • OECD, Test No. 301: Ready biodegradability, Tech. Rep. 9789264070349, Organisation for Economic Co-operation Development, Paris, FR, 1992.
  • NITE, Data from: Biodegradation and bioconcentration data under CSCL, National Institute of Technology and Evaluation, 2007; dataset available at https://www.nite.go.jp/en/.
  • European Commission, Regulation (EC) no 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/ECC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EEC and 2000/21/EC, Off. J. Eur. Union. 50 (2007), pp. 1–281.
  • ECHA, Guidance on information requirements and chemical safety assessment, r.11: PBT/vPvB assessment, Tech. Rep. ED-01-17-294, European Chemicals Agency, Helsinki, FI, 2017.
  • A. Kowalczyk, T.J. Martin, O.R. Price, J.R. Snape, R.A. van Egmond, C.J. Finnegan, H. Schäfer, R.J. Davenport, and G.D. Bending, Refinement of biodegradation tests methodologies and the proposed utility of new microbial ecology techniques, Ecotoxicol. Environ. Saf. 111 (2015), pp. 9–22. doi:10.1016/j.ecoenv.2014.09.021.
  • T.J. Martin, J.R. Snape, A. Bartram, A. Robson, K. Acharya, and R.J. Davenport, Environmentally relevant inoculum concentrations improve the reliability of persistent assessments in biodegradation screening tests, Environ. Sci. Technol. 51 (2017), pp. 3065–3073. doi:10.1021/acs.est.6b05717.
  • E. Benfenati, A. Manganaro, and G. Gini, VEGA-QSAR: AI inside a platform for predictive toxicology. Proceedings of the workshop ‘Popularize Artificial Intelligence 2013, December 5th 2013, Turin, Italy, 2013, published on CEUR Workshop Proceedings Vol 1107.
  • US EPA, Estimation Programs Interface Suite™ for Microsoft® Windows V 4.11, US Environmental Protection Agency, Washington DC, 2012; software available at https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.
  • K. Mansouri, C.M. Grulke, R.S. Judson, and A.J. Williams, OPERA models for predicting physicochemical properties and environmental fate endpoints, J. Cheminform. 10 (2018), pp. 1–19. doi:10.1186/s13321-018-0263-1.
  • JRC, ToxTree 3.1.0 - Toxic hazard estimation by decision tree approach, Joint Research Centre (JRC), Ispra, Italy, 2018; software available at https://ec.europa.eu/jrc/en/eurl/ecvam.
  • A. Lombardo, F. Pizzo, E. Benfenati, A. Manganaro, T. Ferrari, and G. Gini, A new in silico classification model for ready biodegradability, based on molecular fragments, Chemosphere 108 (2014), pp. 10–16. doi:10.1016/j.chemosphere.2014.02.073.
  • D. Ballabio, F. Biganzoli, R. Todeschini, and V. Consonni, Qualitative consensus of QSAR ready biodegradability predictions, Toxicol. Environ. Chem. 99 (2017), pp. 1193–1216.
  • A. Fernández, R. Rallo, and F. Giralt, Prioritization of in silico models and molecular descriptors for the assessment of ready biodegradability, Environ. Res. 142 (2015), pp. 161–168. doi:10.1016/j.envres.2015.06.031.
  • R. Boethling, Comparison of ready biodegradation estimation methods for fragrance materials, Sci. Total Environ. 497–498 (2014), pp. 60–67. doi:10.1016/j.scitotenv.2014.07.090.
  • E. Rorije, H. Loonen, M. Müller, G. Klopman, and W.J.G.M. Peijnenburg, Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test, Chemosphere 38 (1999), pp. 1409–1417. doi:10.1016/S0045-6535(98)00543-8.
  • R. Posthumus, T.P. Traas, W.J.G.M. Peijnenburg, and E.M. Hulzebos, External validation of EPIWIN biodegradation models, SAR QSAR Environ. Res. 16 (2005), pp. 135–148. doi:10.1080/10629360412331319899.
  • G. Marcou, D. Horvath, F. Bonachera, and A. Varnek, Laboratoire De Chemoinformatique UMR 7140 CNRS, University of Strasbourg, Strasbourg, FR, 2019; available at http://infochim.u-strasbg.fr/ [Accessed 1 May 2019].
  • OECD, Data from: EChemPortal: Global portal to information on chemical substances, Organisation for Economic Co-operation Development; dataset available at https://www.echemportal.org/echemportal/index.action.
  • F. Cheng, Y. Ikenaga, Y. Zhou, Y. Yu, W. Li, J. Shen, Z. Du, L. Chen, C. Xu, G. Liu, P.W. Lee, and Y. Tang, In silico assessment of chemical biodegradability, J. Chem. Inf. Model. 52 (2012), pp. 655–669. doi:10.1021/ci200622d.
  • K. Mansouri, T. Ringsted, D. Ballabio, R. Todeschini, and V. Consonni, Quantitative structure-activity relationship models for ready biodegradability of chemicals, J. Chem. Inf. Model. 53 (2013), pp. 867–878. doi:10.1021/ci4000213.
  • H.-J. Klimisch, M. Andreae, and U. Tillmann, A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data, Regul. Toxicol. Pharmacol. 25 (1997), pp. 1–5. doi:10.1006/rtph.1996.1076.
  • NCI, CADD Group Chemoinformatics Tools and User Services, National Cancer Institute, Chemical Biology Laboratory, Bethesda, Maryland, 2019; available at https://cactus.nci.nih.gov/.
  • NIH, PubChem, National Library of Medicine, National Center for Biotechnology Information, Bethesda, Maryland, 2019; available at https://pubchem.ncbi.nlm.nih.gov/.
  • M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel, KNIME - the Konstanz information miner: Version 2.0 and beyond, SIGKDD Explor. 11 (2009), pp. 26–31. doi:10.1145/1656274.1656280.
  • F. Ruggiu, G. Marcou, A. Varnek, and D. Horvath, ISIDA property-labelled fragment descriptors, Mol. Inform. 29 (2010), pp. 855–868. doi:10.1002/minf.201000099.
  • C.M. Bishop, M. Svensén, C.K.I. Williams, and M. Svens, The generative topographic mapping, Neural Comput. 10 (1998), pp. 215–234. doi:10.1162/089976698300017953.
  • N. Kireeva, I.I. Baskin, H.A. Gaspar, D. Horvath, G. Marcou, and A. Varnek, Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison, Mol. Inform. 31 (2012), pp. 301–312. doi:10.1002/minf.201100163.
  • D. Horvath, J. Brown, G. Marcou, and A. Varnek, An evolutionary optimizer of libsvm models, Challenges 5 (2014), pp. 450–472. doi:10.3390/challe5020450.
  • C. Chih-Chung and L. Chih-Jen, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 1–27. doi:10.1145/1961189.1961199.
  • I.H. Witten, E. Frank, M.A. Hall, and C.J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, 4th ed., Morgan Kaufmann, San Fransisco CA, 2016.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77. doi:10.1002/(ISSN)1611-0218.
  • F. Lunghini, G. Marcou, P. Azam, R. Patoux, M.H. Enrici, F. Bonachera, D. Horvath, and A. Varnek, QSPR models for bioconcentration factor (BCF): Are they able to predict data of industrial interest? SAR QSAR Environ. Res. 30 (2019), pp. 507–524. doi:10.1080/1062936X.2019.1626278.
  • R.S. Boethling and J. Costanza, Domain of EPI suite biotransformation models, SAR QSAR Environ. Res. 21 (2010), pp. 415–443. doi:10.1080/1062936X.2010.501816.
  • G. Marcou, D. Horvath, V. Solov’Ev, A. Arrault, P. Vayer, and A. Varnek, Interpretability of SAR/QSAR models of any complexity by atomic contributions, Mol. Inform. 31 (2012), pp. 639–642. doi:10.1002/minf.201100136.
  • E. Hulzebos, D. Sijm, T. Traas, R. Posthumus, and L. Maslankiewicz, Validity and validation of expert (Q)SAR systems, SAR QSAR Environ. Res. 16 (2005), pp. 385–401. doi:10.1080/10659360500204426.
  • R.S. Boethling, E. Sommer, and D. DiFiore, Designing small molecules for biodegradability, Chem. Rev. 107 (2007), pp. 2207–2227. doi:10.1021/cr050952t.
  • OECD, Guidance document on the validation of (Quantitative) Structure Activity Relationship [(Q)SAR] models, Tech. Rep. ENV/JM/MONO(2007)2, Organisation for Economic Cooperation and Development, Paris, FR, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.