219
Views
13
CrossRef citations to date
0
Altmetric
Articles

Molecular mechanism of inhibitor bindings to bromodomain-containing protein 9 explored based on molecular dynamics simulations and calculations of binding free energies

, ORCID Icon, ORCID Icon, &
Pages 149-170 | Received 17 Sep 2019, Accepted 02 Dec 2019, Published online: 18 Dec 2019

References

  • J.W. Tamkun, R. Deuring, M.P. Scott, M. Kissinger, A.M. Pattatucci, T.C. Kaufman, and J.A. Kennison, Brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2, Cell 68 (1992), pp. 561–572. doi:10.1016/0092-8674(92)90191-E.
  • A. Speck-Planche and M.T. Scotti, BET bromodomain inhibitors: Fragment-based in silico design using multi-target QSAR models, Mol. Divers. 23 (2019), pp. 555–572.
  • L. Wang, Y. Wang, H. Sun, J. Zhao, and Q. Wang, Theoretical insight into molecular mechanisms of inhibitor bindings to bromodomain-containing protein 4 using molecular dynamics simulations and calculations of binding free energies, Chem. Phys. Lett. 736 (2019), pp. 136785.
  • A. Speck-Planche, Combining ensemble learning with a fragment-based topological approach to generate new molecular diversity in drug discovery: In silico design of Hsp90 inhibitors, ACS Omega 3 (2018), pp. 14704–14716. doi:10.1021/acsomega.8b02419.
  • J. Ferreira da Costa, D. Silva, O. Caamaño, J.M. Brea, M.I. Loza, C.R. Munteanu, A. Pazos, X. García-Mera, and H. González-Díaz, Perturbation theory/machine learning model of ChEMBL data for dopamine targets: Docking, synthesis, and assay of new l-prolyl-l-leucyl-glycinamide peptidomimetics, ACS Chem. Neurosci. 9 (2018), pp. 2572–2587. doi:10.1021/acschemneuro.8b00083.
  • F.J. Romero-Durán, N. Alonso, M. Yañez, O. Caamaño, X. García-Mera, and H. González-Díaz, Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives, Neuropharmacology 103 (2016), pp. 270–278. doi:10.1016/j.neuropharm.2015.12.019.
  • A. Speck-Planche and M.N.D.S. Cordeiro, Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins, Mol. Divers. 21 (2017), pp. 511–523. doi:10.1007/s11030-017-9731-1.
  • S.R. Haynes, C. Dollard, F. Winston, S. Beck, J. Trowsdale, and I.B. Dawid, The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins, Nucleic Acids Res. 20 (1992), pp. 2603. doi:10.1093/nar/20.10.2603.
  • R. Tumdam, A. Kumar, N. Subbarao, and B.S. Balaji, In silico study directed towards identification of novel high-affinity inhibitors targeting an oncogenic protein: BRD4-BD1, SAR QSAR Environ. Res. 29 (2018), pp. 975–996.
  • P. Filippakopoulos and S. Knapp, Targeting bromodomains: Epigenetic readers of lysine acetylation, Nat. Rev. Drug Discov. 13 (2014), pp. 337. doi:10.1038/nrd4286.
  • P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.-P. Lambert, D. Barsyte-Lovejoy, I. Felletar, R. Volkmer, S. Müller, T. Pawson, A.-C. Gingras, C.H. Arrowsmith, and S. Knapp, Histone recognition and large-scale structural analysis of the human bromodomain family, Cell 149 (2012), pp. 214–231. doi:10.1016/j.cell.2012.02.013.
  • X. Lucas, D. Wohlwend, M. Hügle, K. Schmidtkunz, S. Gerhardt, R. Schüle, M. Jung, O. Einsle, and S. Günther, 4-Acyl pyrroles: Mimicking acetylated lysines in histone code reading, Angew. Chem. Int. Edit. 52 (2013), pp. 14055–14059. doi:10.1002/anie.201307652.
  • B. Raux, Y. Voitovich, C. Derviaux, A. Lugari, E. Rebuffet, S. Milhas, S. Priet, T. Roux, E. Trinquet, J.-C. Guillemot, S. Knapp, J.-M. Brunel, A.Y. Fedorov, Y. Collette, P. Roche, S. Betzi, S. Combes, and X. Morelli, Exploring selective inhibition of the first bromodomain of the human bromodomain and extra-terminal domain (BET) proteins, J. Med. Chem. 59 (2016), pp. 1634–1641. doi:10.1021/acs.jmedchem.5b01708.
  • F. Winston and C.D. Allis, The bromodomain: A chromatin-targeting module? Nat. Struct. Biol. 6 (1999), pp. 601–604. doi:10.1038/10640.
  • R. Jahagirdar, H. Zhang, S. Azhar, J. Tobin, S. Attwell, R. Yu, J. Wu, K.G. McLure, H.C. Hansen, G.S. Wagner, P.R. Young, R.A.K. Srivastava, N.C.W. Wong, and J. Johansson, A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice, Atherosclerosis 236 (2014), pp. 91–100. doi:10.1016/j.atherosclerosis.2014.06.008.
  • E. Middeljans, X. Wan, P.W. Jansen, V. Sharma, H.G. Stunnenberg, and C. Logie, SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes, Plos One 7 (2012), pp. e33834. doi:10.1371/journal.pone.0033834.
  • A.F. Hohmann and C.R. Vakoc, A rationale to target the SWI/SNF complex for cancer therapy, Trends Genet. 30 (2014), pp. 356–363. doi:10.1016/j.tig.2014.05.001.
  • D. Remillard, D.L. Buckley, J. Paulk, G.L. Brien, M. Sonnett, H.-S. Seo, S. Dastjerdi, M. Wühr, S. Dhe-Paganon, S.A. Armstrong, and J.E. Bradner, Degradation of the BAF complex factor BRD9 by heterobifunctional ligands, Angew. Chem. Int. Edit. 56 (2017), pp. 5738–5743. doi:10.1002/anie.201611281.
  • A.F. Hohmann, L.J. Martin, J.L. Minder, J.-S. Roe, J. Shi, S. Steurer, G. Bader, D. McConnell, M. Pearson, T. Gerstberger, T. Gottschamel, D. Thompson, Y. Suzuki, M. Koegl, and C.R. Vakoc, Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition, Nat. Chem. Biol. 12 (2016), pp. 672–679.
  • P.G.K. Clark, L.C.C. Vieira, C. Tallant, O. Fedorov, D.C. Singleton, C.M. Rogers, O.P. Monteiro, J.M. Bennett, R. Baronio, S. Müller, D.L. Daniels, J. Méndez, S. Knapp, P.E. Brennan, and D.J. Dixon, LP99: Discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor, Angew. Chem. Int. Edit. 54 (2015), pp. 6217–6221. doi:10.1002/anie.201501394.
  • T.J. Ley, C. Miller, L. Ding, J. Baty, and L. Fulton, Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia, New Engl. J. Med. 368 (2013), pp. 2059–2074.
  • L. Wang, Z. Zhao, M.B. Meyer, S. Saha, M. Yu, A. Guo, K.B. Wisinski, W. Huang, W. Cai, J.W. Pike, M. Yuan, P. Ahlquist, and W. Xu, CARM1 Methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis, Cancer Cell 25 (2014), pp. 21–36. doi:10.1016/j.ccr.2013.12.007.
  • S.P. Cleary, W.R. Jeck, X. Zhao, K. Chen, S.R. Selitsky, G.L. Savich, T.-X. Tan, M.C. Wu, G. Getz, M.S. Lawrence, J.S. Parker, J. Li, S. Powers, H. Kim, S. Fischer, M. Guindi, A. Ghanekar, and D.Y. Chiang, Identification of driver genes in hepatocellular carcinoma by exome sequencing, Hepatology 58 (2013), pp. 1693–1702. doi:10.1002/hep.26540.
  • C. Kadoch, D.C. Hargreaves, C. Hodges, L. Elias, L. Ho, J. Ranish, and G.R. Crabtree, Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy, Nat. Genet. 45 (2013), pp. 592–601.
  • A.F. Hohmann, L.J. Martin, J. Minder, J.-S. Roe, J. Shi, S. Steurer, G. Bader, D. McConnell, M. Pearson, T. Gerstberger, T. Gottschamel, D. Thompson, Y. Suzuki, M. Koegl, and C. Vakoc, Abstract LB-206: A bromodomain-swap allele demonstrates that on-target chemical inhibition of BRD9 limits the proliferation of acute myeloid leukemia cells, Cancer Res. 76 (2016), pp. LB–206.
  • J.U. Kang, S.H. Koo, K.C. Kwon, J.W. Park, and J.M. Kim, Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer, Cancer Genet. Cytogen. 182 (2008), pp. 1–11. doi:10.1016/j.cancergencyto.2007.12.004.
  • L. Scotto, G. Narayan, S.V. Nandula, S. Subramaniyam, A.M. Kaufmann, J.D. Wright, B. Pothuri, M. Mansukhani, A. Schneider, H. Arias-Pulido, and V.V. Murty, Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha, Mol. Cancer 7 (2008), pp. 58.
  • D.A. Hay, C.M. Rogers, O. Fedorov, C. Tallant, S. Martin, O.P. Monteiro, S. Müller, S. Knapp, C.J. Schofield, and P.E. Brennan, Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains, Med. Chem. Commun. 6 (2015), pp. 1381–1386. doi:10.1039/C5MD00152H.
  • C. Steilmann, M.C.O. Cavalcanti, M. Bartkuhn, J. Pons, H.-C. Schuppe, W. Weidner, K. Steger, and A. Paradowska-Dogan, The interaction of modified histones with the bromodomain testis-specific (BRDT) gene and its mRNA level in sperm of fertile donors and subfertile men, Reproduction (Cambridge, England) 140 (2010), pp. 435–443. doi:10.1530/REP-10-0139.
  • L. Guetzoyan, R.J. Ingham, N. Nikbin, J. Rossignol, M. Wolling, M. Baumert, N.A. Burgess-Brown, C.M. Strain-Damerell, L. Shrestha, P.E. Brennan, O. Fedorov, S. Knapp, and S.V. Ley, Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography, Med. Chem. Commun. 5 (2014), pp. 540–546. doi:10.1039/C4MD00007B.
  • N.H. Theodoulou, P. Bamborough, A.J. Bannister, I. Becher, R.A. Bit, K.H. Che, C.-W. Chung, A. Dittmann, G. Drewes, D.H. Drewry, L. Gordon, P. Grandi, M. Leveridge, M. Lindon, A.-M. Michon, J. Molnar, S.C. Robson, N.C.O. Tomkinson, T. Kouzarides, R.K. Prinjha, and P.G. Humphreys, Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition, J. Med. Chem. 59 (2016), pp. 1425–1439. doi:10.1021/acs.jmedchem.5b00256.
  • T.D. Crawford, S. Vartanian, A. Côté, S. Bellon, M. Duplessis, E.M. Flynn, M. Hewitt, H.-R. Huang, J.R. Kiefer, J. Murray, C.G. Nasveschuk, E. Pardo, F.A. Romero, P. Sandy, Y. Tang, A.M. Taylor, V. Tsui, J. Wang, S. Wang, L. Zawadzke, B.K. Albrecht, S.R. Magnuson, A.G. Cochran, and D. Stokoe, Inhibition of bromodomain-containing protein 9 for the prevention of epigenetically-defined drug resistance, Bioorg. Med. Chem. Lett. 27 (2017), pp. 3534–3541. doi:10.1016/j.bmcl.2017.05.063.
  • P. Zheng, J. Zhang, H. Ma, X. Yuan, P. Chen, J. Zhou, and H. Zhang, Design, synthesis and biological evaluation of imidazo[1,5-a]pyrazin-8(7H)-one derivatives as BRD9 inhibitors, Bioorg. Med. Chem. 27 (2019), pp. 1391–1404. doi:10.1016/j.bmc.2019.02.045.
  • H. Huang, Y. Wang, Q. Li, X. Fei, H. Ma, and R. Hu, miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9, Cancer Lett. 446 (2019), pp. 81–89. doi:10.1016/j.canlet.2019.01.007.
  • K.F. Krämer, N. Moreno, M.C. Frühwald, and K. Kerl, BRD9 Inhibition, alone or in combination with cytostatic compounds as a therapeutic approach in rhabdoid tumors, Int. J. Mol. Sci. 18 (2017), pp. 1537. doi:10.3390/ijms18071537.
  • P. Wang, T. Fu, X. Zhang, F. Yang, G. Zheng, W. Xue, Y. Chen, X. Yao, and F. Zhu, Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD, BBA-Gen. Subjects 1861 (2017), pp. 2766–2777. doi:10.1016/j.bbagen.2017.07.022.
  • G. Li, H. Shen, D. Zhang, Y. Li, and H. Wang, Coarse-grained modeling of nucleic acids using anisotropic gay–Berne and electric multipole potentials, J. Chem. Theory Comput. 12 (2016), pp. 676–693. doi:10.1021/acs.jctc.5b00903.
  • T. Hou, W.A. McLaughlin, and W. Wang, Evaluating the potency of HIV-1 protease drugs to combat resistance, Proteins 71 (2008), pp. 1163–1174. doi:10.1002/prot.21808.
  • M. Yang, X. Zhang, and K. Han, Molecular dynamics simulation of SRP GTPases: Towards an understanding of the complex formation from equilibrium fluctuations, Proteins 78 (2010), pp. 2222–2237. doi:10.1002/prot.v78:10.
  • H. Sun, Y. Li, M. Shen, D. Li, Y. Kang, and T. Hou, Characterizing drug–Target residence time with metadynamics: How to achieve dissociation rate efficiently without losing accuracy against time-consuming approaches, J. Chem. Inf. Model. 57 (2017), pp. 1895–1906. doi:10.1021/acs.jcim.7b00075.
  • E.L. Wu, K.-Y. Wong, X. Zhang, K. Han, and J. Gao, Determination of the structure form of the fourth ligand of zinc in acutolysin a using combined quantum mechanical and molecular mechanical simulation, J. Phys. Chem. B 113 (2009), pp. 2477–2485. doi:10.1021/jp808182y.
  • A. Bunker, P.T. Männistö, J.F.S. Pierre, T. Róg, P. Pomorski, L. Stimson, and M. Karttunen, Molecular dynamics simulations of the enzyme catechol-o-methyltransferase: Methodological issues, SAR QSAR Environ. Res. 19 (2008), pp. 179–189.
  • M.A. Azam, S. Jupudi, N. Saha, and R.K. Paul, Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity, SAR QSAR Environ. Res. 30 (2019), pp. 1–20.
  • P.K. Singh and O. Silakari, Molecular dynamics and pharmacophore modelling studies of different subtype (ALK and EGFR (T790M)) inhibitors in NSCLC, SAR QSAR Environ. Res. 28 (2017), pp. 221–233.
  • M.-J. Yang, X.-Q. Pang, X. Zhang, and K.-L. Han, Molecular dynamics simulation reveals preorganization of the chloroplast FtsY towards complex formation induced by GTP binding, J. Struct. Biol. 173 (2011), pp. 57–66. doi:10.1016/j.jsb.2010.07.013.
  • Q. Shao, Z. Xu, J. Wang, J. Shi, and W. Zhu, Energetics and structural characterization of the “DFG-flip” conformational transition of B-RAF kinase: A SITS molecular dynamics study, Phys. Chem. Chem. Phys. 19 (2017), pp. 1257–1267. doi:10.1039/C6CP06624K.
  • W. Xue, F. Yang, P. Wang, G. Zheng, Y. Chen, X. Yao, and F. Zhu, What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation, ACS Chem. Neurosci. 9 (2018), pp. 1128–1140.
  • T. Zhu, X. He, and J.Z.H. Zhang, Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation, Phys. Chem. Chem. Phys. 14 (2012), pp. 7837–7845. doi:10.1039/C2CP23746F.
  • J. Zhao, J. Chen, Y. Cui, J. Wang, L. Xia, Y. Dai, P. Song, and F. Ma, A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline, Phys. Chem. Chem. Phys. 17 (2015), pp. 1142–1150. doi:10.1039/C4CP04135F.
  • J. Chen, X. Wang, L. Pang, J.Z.H. Zhang, and T. Zhu, Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations, Nucleic Acids Res. 47 (2019), pp. 6618–6631. doi:10.1093/nar/gkz499.
  • J. Chen, J. Wang, B. Yin, L. Pang, W. Wang, and W. Zhu, Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions, ACS Chem. Neurosci. 10 (2019), pp. 4303–4318.
  • T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins 11 (1991), pp. 205–217. doi:10.1002/(ISSN)1097-0134.
  • J. Chen, J. Wang, and W. Zhu, Zinc ion-induced conformational changes in new Delphi metallo-β-lactamase 1 probed by molecular dynamics simulations and umbrella sampling, Phys. Chem. Chem. Phys. 19 (2017), pp. 3067–3075. doi:10.1039/C6CP08105C.
  • J. Chen, J. Wang, F. Lai, W. Wang, L. Pang, and W. Zhu, Dynamics revelation of conformational changes and binding modes of heat shock protein 90 induced by inhibitor associations, RSC Adv. 8 (2018), pp. 25456–25467. doi:10.1039/C8RA05042B.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations, J. Biomol. Struct. Dyn. 36 (2018), pp. 1212–1224. doi:10.1080/07391102.2017.1317666.
  • J. Chen, J. Wang, and W. Zhu, Mutation L1196M-induced conformational changes and the drug resistant mechanism of anaplastic lymphoma kinase studied by free energy perturbation and umbrella sampling, Phys. Chem. Chem. Phys. 19 (2017), pp. 30239–30248. doi:10.1039/C7CP05418A.
  • T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking, J. Comput. Chem. 32 (2011), pp. 866–877. doi:10.1002/jcc.v32.5.
  • G. Hu, S. Xu, and J. Wang, Characterizing the free-energy landscape of MDM2 protein–Ligand interactions by steered molecular dynamics simulations, Chem. Biol. Drug Des. 86 (2015), pp. 1351–1359. doi:10.1111/cbdd.12598.
  • C. Suri and P.K. Naik, Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to γ-tubulin dimer, SAR QSAR Environ. Res. 26 (2015), pp. 507–519.
  • L. Duan, G. Feng, X. Wang, L. Wang, and Q. Zhang, Effect of electrostatic polarization and bridging water on CDK2–Ligand binding affinities calculated using a highly efficient interaction entropy method, Phys. Chem. Chem. Phys. 19 (2017), pp. 10140–10152. doi:10.1039/C7CP00841D.
  • W. Xue, P. Wang, G. Tu, F. Yang, G. Zheng, X. Li, X. Li, Y. Chen, X. Yao, and F. Zhu, Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder, Phys. Chem. Chem. Phys. 20 (2018), pp. 6606–6616. doi:10.1039/C7CP07869B.
  • Y. Gao, T. Zhu, and J. Chen, Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method, Chem. Phys. Lett. 706 (2018), pp. 400–408.
  • L.L. Duan, G.Q. Feng, and Q.G. Zhang, Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy, Sci. Rep. 6 (2016), pp. 31488.
  • L. Duan, X. Liu, and J.Z.H. Zhang, Interaction entropy: A new paradigm for highly efficient and reliable computation of protein–Ligand binding free energy, J. Am. Chem. Soc. 138 (2016), pp. 5722–5728. doi:10.1021/jacs.6b02682.
  • S. Tian, J. Zeng, X. Liu, J. Chen, J.Z.H. Zhang, and T. Zhu, Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling, Chem. Chem. Phys. 21 (2019), pp. 22103–22112. doi:10.1039/C9CP03598B.
  • L.T. Song, J. Tu, R.R. Liu, M. Zhu, Y.J. Meng, and H.L. Zhai, Molecular mechanism study of several inhibitors binding to BRD9 bromodomain based on molecular simulations, J. Biomol. Struct. Dyn. 37 (2019), pp. 2970–2979. doi:10.1080/07391102.2018.1502097.
  • J. Zhao, H. Dong, and Y. Zheng, Theoretical insights into the excited state double proton transfer mechanism of deep red pigment alkannin, J. Phys. Chem. A 122 (2018), pp. 1200–1208. acs.jpca.7b10492.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, Insight into selective mechanism of class of I-BRD9 inhibitors toward BRD9 based on molecular dynamics simulations, Chem. Biol. Drug Des. 93 (2019), pp. 163–176. doi:10.1111/cbdd.13398.
  • L.J. Martin, M. Koegl, G. Bader, X.-L. Cockcroft, O. Fedorov, D. Fiegen, T. Gerstberger, M.H. Hofmann, A.F. Hohmann, D. Kessler, S. Knapp, P. Knesl, S. Kornigg, S. Müller, H. Nar, C. Rogers, K. Rumpel, O. Schaaf, S. Steurer, C. Tallant, C.R. Vakoc, M. Zeeb, A. Zoephel, M. Pearson, G. Boehmelt, and D. McConnell, Structure-based design of an in vivo active selective BRD9 inhibitor, J. Med. Chem. 59 (2016), pp. 4462–4475. doi:10.1021/acs.jmedchem.5b01865.
  • D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, I. Cheatham, T.E.V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York, and P.A. Kollman, Amber 2018, University of California, San Francisco, 2018.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • D.C. Bas, D.M. Rogers, and J.H. Jensen, Very fast prediction and rationalization of pKa values for protein–Ligand complexes, Proteins 73 (2008), pp. 765–783. doi:10.1002/prot.22102.
  • H. Li, A.D. Robertson, and J.H. Jensen, Very fast empirical prediction and rationalization of protein pKa values, Proteins 61 (2005), pp. 704–721. doi:10.1002/prot.20660.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935.
  • A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born, J. Chem. Theory Comput. 8 (2012), pp. 1542–1555. doi:10.1021/ct200909j.
  • R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald, J. Chem. Theory Comput. 9 (2013), pp. 3878–3888. doi:10.1021/ct400314y.
  • J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341. doi:10.1016/0021-9991(77)90098-5.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593.
  • D.M. York, T.A. Darden, and L.G. Pedersen, The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods, J. Chem. Phys. 99 (1993), pp. 8345–8348.
  • R.M. Levy, A.R. Srinivasan, W.K. Olson, and J.A. McCammon, Quasi-harmonic method for studying very low frequency modes in proteins, Biopolymers 23 (1984), pp. 1099–1112. doi:10.1002/(ISSN)1097-0282.
  • A.E. García, Large-amplitude nonlinear motions in proteins, Phys. Rev. Lett. 68 (1992), pp. 2696–2699. doi:10.1103/PhysRevLett.68.2696.
  • J. Chen, B. Yin, L. Pang, W. Wang, J.Z.H. Zhang, and T. Zhu, Binding modes and conformational changes of FK506-binding protein 51 induced by inhibitor bindings: Insight into molecular mechanisms based on multiple simulation technologies, J. Biomol. Struct. Dyn. (2019), pp. 1–15. doi:10.1080/07391102.2019.1624616
  • J. Chen, X. Wang, T. Zhu, Q. Zhang, and J.Z.H. Zhang, A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease based on thermodynamic integration and MM-PBSA methods, J. Chem. Inf. Model. 55 (2015), pp. 1903–1913. doi:10.1021/acs.jcim.5b00173.
  • D.R. Roe and T.E. Cheatham, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • M.A. Azam and J. Thathan, Pharmacophore generation, atom-based 3D-QSAR and molecular dynamics simulation analyses of pyridine-3-carboxamide-6-yl-urea analogues as potential gyrase B inhibitors, SAR QSAR Environ. Res. 28 (2017), pp. 275–296.
  • J. Wang, Q. Shao, B.P. Cossins, J. Shi, K. Chen, and W. Zhu, Thermodynamics calculation of protein–Ligand interactions by QM/MM polarizable charge parameters, J. Biomol. Struct. Dyn. 34 (2016), pp. 163–176. doi:10.1080/07391102.2015.1019928.
  • T. Hou, N. Li, Y. Li, and W. Wang, Characterization of domain-peptide interaction interface: Prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models, J. Proteome Res. 11 (2012), pp. 2982–2995. doi:10.1021/pr3000688.
  • A. Onufriev, D. Bashford, and D.A. Case, Exploring protein native states and large-scale conformational changes with a modified generalized born model, Proteins 55 (2004), pp. 383–394. doi:10.1002/prot.20033.
  • H. Gohlke, C. Kiel, and D.A. Case, Insights into protein–Protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes, J. Mol. Biol. 330 (2003), pp. 891–913. doi:10.1016/S0022-2836(03)00610-7.
  • X. Jiang, G. Chen, and L. Wang, Structural and dynamic evolution of the amphipathic n-terminus diversify enzyme thermostability in the glycoside hydrolase family 12, Phys. Chem. Chem. Phys. 18 (2016), pp. 21340–21350. doi:10.1039/C6CP02998A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.