292
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Revealing binding selectivity of inhibitors toward bromodomain-containing proteins 2 and 4 using multiple short molecular dynamics simulations and free energy analyses

ORCID Icon, , , , &
Pages 373-398 | Received 15 Jan 2020, Accepted 24 Mar 2020, Published online: 04 Jun 2020

References

  • T. Noguchi-Yachide, BET bromodomain as a target of epigenetic therapy, Chem. Pharm. Bull. 64 (2016), pp. 540–547. doi:10.1248/cpb.c16-00225.
  • S.G. Smith and M.-M. Zhou, The bromodomain: A new target in emerging epigenetic medicine, ACS Chem. Biol. 11 (2016), pp. 598–608. doi:10.1021/acschembio.5b00831.
  • R. Sanchez, J. Meslamani, and M.-M. Zhou, The bromodomain: From epigenome reader to druggable target, BBA-Gene Regul. Mech. 1839 (2014), pp. 676–685.
  • S. Mujtaba, L. Zeng, and M.M. Zhou, Structure and acetyl-lysine recognition of the bromodomain, Oncogene 26 (2007), pp. 5521–5527. doi:10.1038/sj.onc.1210618.
  • X. Lucas, D. Wohlwend, M. Hügle, K. Schmidtkunz, S. Gerhardt, R. Schüle, M. Jung, O. Einsle, and S. Günther, 4-Acyl pyrroles: Mimicking acetylated lysines in histone code reading, Angew. Chem. Int. Edit. 52 (2013), pp. 14055–14059. doi:10.1002/anie.201307652.
  • T.D. Crawford, V. Tsui, E.M. Flynn, S. Wang, A. M. Taylor, A. Côté, J.E. Audia, M.H. Beresini, D.J. Burdick, R.T. Cummings, L.A. Dakin, M. Duplessis, A.C. Good, M.C. Hewitt, H.R. Huang, H. Jayaram, J.R. Kiefer, Y. Jiang, J. Murray, C.G. Nasveschuk, E. Pardo, F. Poy, F.A. Romero, Y. Tang, J. Wang, Z. Xu, L.E. Zawadzke, X. Zhu, B.K. Albrecht, S.R. Magnuson, S. Bellon, and A.G. Cochran, Diving into the water: Inducible binding conformations for BRD4, TAF1(2), BRD9, and CECR2 bromodomains, J. Med. Chem. 59 (2016), pp. 5391–5402. doi:10.1021/acs.jmedchem.6b00264.
  • H. Zhong, Z. Wang, X. Wang, H. Liu, D. Li, H. Liu, X. Yao, and T. Hou, Importance of a crystalline water network in docking-based virtual screening: A case study of BRD4, Phys. Chem. Chem. Phys. 21 (2019), pp. 25276–25289. doi:10.1039/C9CP04290C.
  • Y. Rodríguez, G. Gerona‐Navarro, R. Osman, and M.M. Zhou, In silico design and molecular basis for the selectivity of olinone toward the first over the second bromodomain of BRD4, Proteins 88 (2020), pp. 414–430.
  • E. Nittinger, P. Gibbons, C. Eigenbrot, D.R. Davies, B. Maurer, C.L. Yu, J.R. Kiefer, A. Kuglstatter, J. Murray, and D.F. Ortwine, Water molecules in protein–ligand interfaces. Evaluation of software tools and SAR comparison, J. Comput. Aid. Mol. Des. 33 (2019), pp. 307–330. doi:10.1007/s10822-019-00187-y.
  • R.G. Bryant, The dynamics of water-protein interaction, Annu. Rev. Bioph. Biom. 25 (1996), pp. 29–53. doi:10.1146/annurev.bb.25.060196.000333.
  • V.P. Denisov and B. Halle, Protein hydration dynamics in aqueous solution, Farad. Disc. 103 (1996), pp. 227–244. doi:10.1039/fd9960300227.
  • E. Meyer, Internal water molecules and H-bonding in biological macromolecules: A review of structural features with functional implications, Protein Sci. 1 (1992), pp. 1543–1562. doi:10.1002/pro.5560011203.
  • A. Speck-Planche and M.T. Scotti, BET bromodomain inhibitors: Fragment-based in silico design using multi-target QSAR models, Mol. Divers. 23 (2019), pp. 555–572. doi:10.1007/s11030-018-9890-8.
  • E. Bourova-Flin, F. Chuffart, S. Rousseaux, and S. Khochbin, The role of bromodomain testis-specific factor, BRDT, in cancer: A biomarker and a possible therapeutic target, Cell J. 19 (2017), pp. 1–8. doi:10.22074/cellj.2017.5060.
  • H. Huang, Y. Wang, Q. Li, X. Fei, H. Ma, and R. Hu, miR-140-3p Functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9, Cancer Lett. 446 (2019), pp. 81–89. doi:10.1016/j.canlet.2019.01.007.
  • R.M. Karim and E. Schönbrunn, An advanced tool to interrogate BRD9, J. Med. Chem. 59 (2016), pp. 4459–4461. doi:10.1021/acs.jmedchem.6b00550.
  • D.A. Hay, C.M. Rogers, O. Fedorov, C. Tallant, S. Martin, O.P. Monteiro, S. Müller, S. Knapp, C.J. Schofield, and P.E. Brennan, Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains, Med. Chem. Comm. 6 (2015), pp. 1381–1386. doi:10.1039/C5MD00152H.
  • A. Halder and A. Giri, Multi-target chemometric modelling, fragment analysis and virtual screening with ERK Inhibitors as potential anticancer agents, Molecules 24 (2019), pp. 3909. doi:10.3390/molecules24213909.
  • T. Zhu, X. He, and J.Z.H. Zhang, Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation, Phys Chem. Chem. Phys. 14 (2012), pp. 7837–7845. doi:10.1039/C2CP23746F.
  • A. Speck-Planche, Combining ensemble learning with a fragment-based topological approach to generate new molecular diversity in drug discovery: In silico design of Hsp90 inhibitors, ACS Omega 3 (2018), pp. 14704–14716. doi:10.1021/acsomega.8b02419.
  • F.J. Romero-Durán, N. Alonso, M. Yañez, O. Caamaño, X. García-Mera, and H. González-Díaz, Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives, Neuropharmacology 103 (2016), pp. 270–278. doi:10.1016/j.neuropharm.2015.12.019.
  • M. Brand, A.M. Measures, B.G. Wilson, W.A. Cortopassi, R. Alexander, M. Höss, D.S. Hewings, T.P.C. Rooney, R.S. Paton, and S.J. Conway, Small molecule inhibitors of bromodomain–acetyl-lysine interactions, ACS Chem. Biol. 10 (2015), pp. 22–39. doi:10.1021/cb500996u.
  • P. Filippakopoulos and S. Knapp, Targeting bromodomains: Epigenetic readers of lysine acetylation, Nat. Rev. Drug Discov. 13 (2014), pp. 337–356. doi:10.1038/nrd4286.
  • P. Rajendran, G.S. Johnson, L. Li, Y.-S. Chen, W.M. Dashwood, N. Nguyen, A.M. Ulusan, F.U. Ertem, M. Zhang, and J. Li, Acetylation of CCAR2 establishes a BET/BRD9 acetyl switch in response to combined deacetylase and bromodomain inhibition, Cancer Res. 79 (2019), pp. 918–927. doi:10.1158/0008-5472.CAN-18-2003.
  • Z. Zhang, S. Hou, H. Chen, T. Ran, F. Jiang, Y. Bian, D. Zhang, Y. Zhi, L. Wang, L. Zhang, H. Li, Y. Zhang, W. Tang, T. Lu, and Y. Chen, Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors, Bioorg. Med. Chem. Lett. 26 (2016), pp. 2931–2935. doi:10.1016/j.bmcl.2016.04.034.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A theoretical insight into selectivity of inhibitors toward two domains of bromodomain-containing protein 4 using molecular dynamics simulations, Chem. Bio. Drug Des. 91 (2017), pp. 828–840. doi:10.1111/cbdd.13148.
  • C.M. Chiang, Brd4 engagement from chromatin targeting to transcriptional regulation: Selective contact with acetylated histone H3 and H4, F1000 Biol. Rep. 1 (2009), pp. 98.
  • G.A. Josling, S.A. Selvarajah, M. Petter, and M.F. Duffy, The role of bromodomain proteins in regulating gene expression, Genes 3 (2012), pp. 320–343. doi:10.3390/genes3020320.
  • R. Sanchez and M.-M. Zhou, The role of human bromodomains in chromatin biology and gene transcription, Curr. Opin. Drug Disc. Dev. 12 (2009), pp. 659–665.
  • M.G.J. Baud, E. Lin-Shiao, T. Cardote, C. Tallant, A. Pschibul, K.-H. Chan, M. Zengerle, J.R. Garcia, T.T.-L. Kwan, and F.M. Ferguson, A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes, Science 346 (2014), pp. 638–641. doi:10.1126/science.1249830.
  • Q. Wang, Y. Li, J. Xu, Y. Wang, E.L.-H. Leung, L. Liu, and X. Yao, Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: Insight from microsecond molecular dynamics simulations, Sci. Rep. 7 (2017), pp. 8857. doi:10.1038/s41598-017-08909-8.
  • Q. Wang, Y. Li, J. Xu, Y. Wang, D. Shi, L. Liu, E.L.-H. Leung, and X. Yao, Computational study on the selective inhibition mechanism of MS402 to the first and second bromodomains of BRD4, Proteins 87 (2019), pp. 3–11. doi:10.1002/prot.25611.
  • R. Tumdam, A. Kumar, N. Subbarao, and B.S. Balaji, In silico study directed towards identification of novel high-affinity inhibitors targeting an oncogenic protein: BRD4-BD, SAR QSAR Environ. Res. 29 (2018), pp. 975–996. doi:10.1080/1062936X.2018.1537301.
  • C.M. Chiang, Brd4 engagement from chromatin targeting to transcriptional regulation: Selective contact with acetylated histone H3 and H4, F1000 Biol. Rep. 1 (2009), pp. 98.
  • V. Deepak, B. Wang, D. Koot, A. Kasonga, X.X. Stander, M. Coetzee, and A. Stander, In silico design and bioevaluation of selective benzotriazepine BRD4 inhibitors with potent antiosteoclastogenic activity, Chem. Biol. Drug Des. 90 (2017), pp. 97–111. doi:10.1111/cbdd.12930.
  • P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W.B. Smith, O. Fedorov, E.M. Morse, T. Keates, T.T. Hickman, I. Felletar, M. Philpott, S. Munro, M.R. McKeown, Y. Wang, A.L. Christie, N. West, M.J. Cameron, B. Schwartz, T.D. Heightman, N. La Thangue, C.A. French, O. Wiest, A.L. Kung, S. Knapp, and J.E. Bradner, Selective inhibition of BET bromodomains, Nature 468 (2010), pp. 1067–1073. doi:10.1038/nature09504.
  • E. Nicodeme, K.L. Jeffrey, U. Schaefer, S. Beinke, S. Dewell, C.-W. Chung, R. Chandwani, I. Marazzi, P. Wilson, and H. Coste, Suppression of inflammation by a synthetic histone mimic, Nature 468 (2010), pp. 1119–1123. doi:10.1038/nature09589.
  • E.L. Wu, K.-Y. Wong, X. Zhang, K. Han, and J. Gao, Determination of the structure form of the fourth ligand of zinc in acutolysin a using combined quantum mechanical and molecular mechanical simulation, J. Phys. Chem. B 113 (2009), pp. 2477–2485. doi:10.1021/jp808182y.
  • L. Wang, Y. Wang, H. Sun, J. Zhao, and Q. Wang, Theoretical insight into molecular mechanisms of inhibitor bindings to bromodomain-containing protein 4 using molecular dynamics simulations and calculations of binding free energies, Chem. Phys. Lett. 736 (2019), pp. 136785. doi:10.1016/j.cplett.2019.136785.
  • K. Wittayanarakul, O. Aruksakunwong, S. Saen-oon, W. Chantratita, V. Parasuk, P. Sompornpisut, and S. Hannongbua, Insights into saquinavir resistance in the G48V HIV-1 protease: Quantum calculations and molecular dynamic simulations, Biophys. J. 88 (2005), pp. 867–879. doi:10.1529/biophysj.104.046110.
  • J. Chen, X. Wang, L. Pang, J.Z.H. Zhang, and T. Zhu, Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations, Nucleic Acids Res. 47 (2019), pp. 6618–6631. doi:10.1093/nar/gkz499.
  • L. Duan, G. Feng, X. Wang, L. Wang, and Q. Zhang, Effect of electrostatic polarization and bridging water on CDK2–ligand binding affinities calculated using a highly efficient interaction entropy method, Phys. Chem. Che. Phys. 19 (2017), pp. 10140–10152. doi:10.1039/C7CP00841D.
  • L. Duan, X. Liu, and J.Z.H. Zhang, Interaction entropy: A new paradigm for highly efficient and reliable computation of protein–ligand binding free energy, J. Am. Chem. Soc. 138 (2016), pp. 5722–5728. doi:10.1021/jacs.6b02682.
  • L. Wang, G. Zheng, X. Liu, D. Ni, X. He, J. Cheng, and S. Lu, Molecular dynamics simulations provide insights into the origin of gleevec’s selectivity toward human tyrosine kinases, J. Biomol. Struct. Dyn. 37 (2019), pp. 2733–2744. doi:10.1080/07391102.2018.1496139.
  • A. Bunker, P.T. Männistö, J.-F.S. Pierre, T. Róg, P. Pomorski, L. Stimson, and M. Karttunen, Molecular dynamics simulations of the enzyme Catechol-O-Methyltransferase: Methodological issues, SAR QSAR Environ. Res. 19 (2008), pp. 179–189. doi:10.1080/10629360701843318.
  • M.A. Azam, S. Jupudi, N. Saha, and R.K. Paul, Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity, SAR QSAR Environ. Res. 30 (2019), pp. 1–20. doi:10.1080/1062936X.2018.1539034.
  • P.K. Singh and O. Silakari, Molecular dynamics and pharmacophore modelling studies of different subtype (ALK and EGFR (T790M)) inhibitors in NSCLC, SAR QSAR Environ. Res. 28 (2017), pp. 221–233. doi:10.1080/1062936X.2017.1300189.
  • J. Zhao, B. Yin, H. Sun, L. Pang, and J. Chen, Identifying hot spots of inhibitor-CDK2 bindings by computational alanine scanning, Chem. Phys. Lett. 747 (2020), pp. 137329. doi:10.1016/j.cplett.2020.137329.
  • P. Auffinger and E. Westhof, RNA hydration: Three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA Asp anticodon hairpin, J. Mol. Biol. 269 (1997), pp. 326–341. doi:10.1006/jmbi.1997.1022.
  • L.S.D. Caves, J.D. Evanseck, and M. Karplus, Locally accessible conformations of proteins: Multiple molecular dynamics simulations of crambin, Protein Sci. 7 (1998), pp. 649–666. doi:10.1002/pro.5560070314.
  • B. Knapp, L. Ospina, and C.M. Deane, Avoiding false positive conclusions in molecular simulation: The importance of replicas, J. Chem. Theory Comput. 14 (2018), pp. 6127–6138. doi:10.1021/acs.jctc.8b00391.
  • J. Chen, J. Wang, B. Yin, L. Pang, W. Wang, and W. Zhu, Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions, ACS Chem. Neurosci. 10 (2019), pp. 4303–4318. doi:10.1021/acschemneuro.9b00348.
  • J. Chen, X. Liu, S. Zhang, J. Chen, H. Sun, L. Zhang, and Q. Zhang, Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses, Phys. Chem. Chem. Phys. 22 (2020), pp. 2262–2275. doi:10.1039/C9CP05704H.
  • J. Chen, B. Yin, L. Pang, W. Wang, J.Z.H. Zhang, and T. Zhu, Binding modes and conformational changes of FK506-binding protein 51 induced by inhibitor bindings: Insight into molecular mechanisms based on multiple simulation technologies, J. Biomol. Struct. Dyn. 38 (2019), pp. 1–15.
  • S. Tian, J. Zeng, X. Liu, J. Chen, J.Z.H. Zhang, and T. Zhu, Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling, Phys. Chem. Chem. Phys. 21 (2019), pp. 22103–22112. doi:10.1039/C9CP03598B.
  • L. Wang, J.K. Pratt, T. Soltwedel, G.S. Sheppard, S.D. Fidanze, D. Liu, L.A. Hasvold, R.A. Mantei, J.H. Holms, W.J. McClellan, M.D. Wendt, C. Wada, R. Frey, T.M. Hansen, R. Hubbard, C.H. Park, L. Li, T.J. Magoc, D.H. Albert, X. Lin, S.E. Warder, P. Kovar, X. Huang, D. Wilcox, R. Wang, G. Rajaraman, A.M. Petros, C.W. Hutchins, S.C. Panchal, C. Sun, S.W. Elmore, Y. Shen, W.M. Kati, and K.F. McDaniel, Fragment-based, structure-enabled discovery of novel pyridones and pyridone macrocycles as potent bromodomain and extra-terminal domain (BET) Family bromodomain inhibitors, J. Med. Chem. 60 (2017), pp. 3828–3850. doi:10.1021/acs.jmedchem.7b00017.
  • W.L. DeLano, The PyMOL molecular graphics system. (2002). Available at http://www.pymol.org.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935. doi:10.1063/1.445869.
  • J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341. doi:10.1016/0021-9991(77)90098-5.
  • J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, and R.D. Skeel, Langevin stabilization of molecular dynamics, J. Chem. Phys. 114 (2001), pp. 2090–2098. doi:10.1063/1.1332996.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593. doi:10.1063/1.470117.
  • S. Le Grand, A.W. Götz, and R.C. Walker, SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations, Comp. Phys. Commun. 3 (2012), pp. 374–380. doi:10.1016/j.cpc.2012.09.022.
  • R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with aMBER on GPUs. 2. Explicit solvent particle mesh Ewald, J. Chem. Theory Comput. 9 (2013), pp. 3878–3888. doi:10.1021/ct400314y.
  • A.W. Götz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born, J. Chem. Theory Comput. 8 (2012), pp. 1542–1555. doi:10.1021/ct200909j.
  • Y. Miao, W. Sinko, L. Pierce, D. Bucher, R.C. Walker, and J.A. McCammon, Improved reweighting of accelerated molecular dynamics simulations for free energy calculation, J. Chem. Theory Comput. 10 (2014), pp. 2677–2689. doi:10.1021/ct500090q.
  • J. Wang, P. Morin, W. Wang, and P.A. Kollman, Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA, J. Am. Chem. Soc. 123 (2001), pp. 5221–5230. doi:10.1021/ja003834q.
  • C. Wang, D.A. Greene, L. Xiao, R. Qi, and R. Luo, Recent developments and applications of the MMPBSA method, Front. Mol. Biosci. 4 (2018), pp. 1–18. doi:10.3389/fmolb.2017.00087.
  • T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking, J. Comput. Chem. 32 (2011), pp. 866–877. doi:10.1002/jcc.21666.
  • J. Chen, X. Wang, T. Zhu, Q. Zhang, and J.Z.H. Zhang, A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 protease based on thermodynamic integration and MM-PBSA methods, J. Chem. Inf. Model. 55 (2015), pp. 1903–1913.
  • U. Raj, H. Kumar, and P.K. Varadwaj, Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors, J. Biomol. Struct. Dyn. 35 (2017), pp. 2351–2362. doi:10.1080/07391102.2016.1217276.
  • L.T. Song, J. Tu, R.R. Liu, M. Zhu, Y.J. Meng, and H.L. Zhai, Molecular mechanism study of several inhibitors binding to BRD9 bromodomain based on molecular simulations, J. Biomol. Struct. Dyn. 37 (2019), pp. 2970–2979. doi:10.1080/07391102.2018.1502097.
  • J. Wang, Q. Shao, B.P. Cossins, J. Shi, K. Chen, and W. Zhu, Thermodynamics calculation of protein–ligand interactions by QM/MM polarizable charge parameters, J. Biomol. Struct. Dyn. 34 (2016), pp. 163–176. doi:10.1080/07391102.2015.1019928.
  • T. Hou, N. Li, Y. Li, and W. Wang, Characterization of domain–peptide interaction interface: Prediction of SH3 domain-mediated protein–protein interaction network in yeast by generic structure-based models, J. Proteome Res. 11 (2012), pp. 2982–2995. doi:10.1021/pr3000688.
  • S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Dis. 10 (2015), pp. 449–461. doi:10.1517/17460441.2015.1032936.
  • F. Yan, X. Liu, S. Zhang, Q. Zhang, and J. Chen, Understanding conformational diversity of heat shock protein 90 (HSP90) and binding features of inhibitors to HSP90 via molecular dynamics simulations, Chem. Biol. Drug Des. 95 (2020), pp. 87–103. doi:10.1111/cbdd.13623.
  • Y. Gao, T. Zhu, and J. Chen, Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method, Chem. Phys. Lett. 706 (2018), pp. 400–408.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations, J. Biomol. Struct. Dyn. 36 (2018), pp. 1212–1224. doi:10.1080/07391102.2017.1317666.
  • H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring, Phys. Chem. Chem. Phys. 16 (2014), pp. 22035–22045.doi:10.1039/c4cp03179b.
  • A. Onufriev, D. Bashford, and D.A. Case, Exploring protein native states and large-scale conformational changes with a modified generalized born model, Proteins 55 (2004), pp. 383–394.doi:10.1002/prot.20033.
  • X. Jiang, G. Chen, and L. Wang, Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12, Phys. Chem. Chem. Phys. 18 (2016), pp. 21340–21350. doi:10.1039/c6cp02998a.
  • B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, and A.E. Roitberg, MMPBSA.py: An efficient program for end-state free energy calculations, J. Chem. Theory Comput. 8 (2012), pp. 3314–3321. doi:10.1021/ct300418h.
  • D.R. Roe and T.E. Cheatham, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095.doi:10.1021/ct400341p.
  • S. Shi, K. Sui, W. Liu, Y. Lei, S. Zhang, and Q. Zhang, Revealing binding selectivity of ligands toward murine double minute 2 and murine double minute X based on molecular dynamics simulations and binding free energy calculations, J. Biomol. Struct. Dyn. (2019), pp. 1–14. doi:10.1080/07391102.2019.1695671.
  • X. Jiang, W. Li, G. Chen, and L. Wang, Dynamic perturbation of the active site determines reversible thermal inactivation in glycoside hydrolase family 12, J. Chem. Inf. Model. 57 (2017), pp. 288–297. doi:10.1021/acs.jcim.6b00692.
  • M.T. Khan, A.U. Rehaman, M. Junaid, S.I. Malik, and D.-Q. Wei, Insight into novel clinical mutants of RpsA-S324F, E325K, and G341R of Mycobacterium tuberculosis associated with pyrazinamide resistance, Comput. Struct. Biotec. 16 (2018), pp. 379–387. doi:10.1016/j.csbj.2018.09.004.
  • F. Yan, X. Liu, S. Zhang, J. Su, Q. Zhang, and J. Chen, Electrostatic interaction-mediated conformational changes of adipocyte fatty acid binding protein probed by molecular dynamics simulation, J. Biomol. Struct. Dyn. 37 (2019), pp. 3583–3595. doi:10.1080/07391102.2018.1520648.
  • L.Q. Yang, P. Sang, R.-P. Zhang, and S.-Q. Liu, Substrate-induced changes in dynamics and molecular motions of cuticle-degrading serine protease PL646: A molecular dynamics study, RSC Adv. 7 (2017), pp. 42094–42104.
  • Y. Wang, L.F. Wang, L.L. Zhang, H.B. Sun, and J. Zhao, Molecular mechanism of inhibitor bindings to bromodomain-containing protein 9 explored based on molecular dynamics simulations and calculations of binding free energies, SAR QSAR Environ. Res. 31 (2019), pp. 149–170. doi:10.1080/1062936X.2019.1701075.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, Insight into selective mechanism of class of I-BRD9 inhibitors toward BRD9 based on molecular dynamics simulations, Chem. Biol. Drug Des. 93 (2019), pp. 163–176. doi:10.1111/cbdd.13398.
  • T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins 11 (1991), pp. 205–217. doi:10.1002/prot.340110305.
  • J. Chen, J. Wang, and W. Zhu, Zinc ion-induced conformational changes in new Delphi metallo-β-lactamase 1 probed by molecular dynamics simulations and umbrella sampling, Phys Chem. Chem. Phys. 19 (2017), pp. 3067–3075. doi:10.1039/c6cp08105c.
  • R.M. Levy, A.R. Srinivasan, W.K. Olson, and J.A. McCammon, Quasi-harmonic method for studying very low frequency modes in proteins, Biopolymers 23 (1984), pp. 1099–1112. doi:10.1002/bip.360230610.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. Model. 14 (1996), pp. 33–38.
  • M. Yang, X. Zhang, and K. Han, Molecular dynamics simulation of SRP GTPases: Towards an understanding of the complex formation from equilibrium fluctuations, Proteins 78 (2010), pp. 2222–2237. doi:10.1002/prot.22734.
  • J. Xing, W. Lu, R. Liu, Y. Wang, Y. Xie, H. Zhang, Z. Shi, H. Jiang, Y.-C. Liu, K. Chen, H. Jiang, C. Luo, and M. Zheng, Machine-learning-assisted approach for discovering novel inhibitors targeting bromodomain-containing protein 4, J. Chem. Inf. Model. 57 (2017), pp. 1677–1690. doi:10.1021/acs.jcim.7b00098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.