431
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis

ORCID Icon, ORCID Icon, , &
Pages 547-570 | Received 23 Apr 2020, Accepted 31 May 2020, Published online: 17 Jun 2020

References

  • T. Kouzarides, Chromatin modifications and their function, Cell 128 (2007), pp. 693–705. doi:10.1016/j.cell.2007.02.005.
  • B.M. Turner, Reading signals on the nucleosome with a new nomenclature for modified histones, Nat. Struct. Mol. Biol. 12 (2005), pp. 110–112. doi:10.1038/nsmb0205-110.
  • K.J. Falkenberg and R.W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders, Nat. Rev. Drug Discov. 13 (2014), pp. 673–691.
  • J.W. Tamkun, R. Deuring, M.P. Scott, M. Kissinger, A.M. Pattatucci, T.C. Kaufman, and J.A. Kennison, Brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF 2 SWI 2, Cell 68 (1992), pp. 561–572. doi:10.1016/0092-8674(92)90191-E.
  • S.R. Haynes, C. Dollard, F. Winston, S. Beck, J. Trowsdale, and I.B. Dawid, The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins, Nucleic Acids Res. 20 (1992), pp. 2603–2603. doi:10.1093/nar/20.10.2603.
  • C. Arrowsmith, C. Bountra, P. Fish, K. Lee, and M. Schapira, Epigenetic protein families: A new frontier for drug discovery, Nat. Rev. Drug Discov. 11 (2012), pp. 384–400. doi:10.1038/nrd3674.
  • P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.-P. Lambert, D. Barsyte-Lovejoy, I. Felletar, R. Volkmer, S. Müller, T. Pawson, A.-C. Gingras, C.H. Arrowsmith, and S. Knapp, Histone recognition and large-scale structural analysis of the human bromodomain family, Cell 149 (2012), pp. 214–231. doi:10.1016/j.cell.2012.02.013.
  • P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W.B. Smith, O. Fedorov, E.M. Morse, T. Keates, T.T. Hickman, I. Felletar, M. Philpott, S. Munro, M.R. McKeown, Y. Wang, A.L. Christie, N. West, M.J. Cameron, B. Schwartz, T.D. Heightman, N. La Thangue, C.A. French, O. Wiest, A.L. Kung, S. Knapp, and J.E. Bradner, Selective inhibition of BET bromodomains, Nature 468 (2010), pp. 1067–1073. doi:10.1038/nature09504.
  • D.J. Owen, P. Ornaghi, J.C. Yang, N. Lowe, P.R. Evans, P. Ballario, D. Neuhaus, P. Filetici, and A.A. Travers, The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p, Embo J. 19 (2000), pp. 6141–6149. doi:10.1093/emboj/19.22.6141.
  • P. Filippakopoulos and S. Knapp, The bromodomain interaction module, FEBS Lett. 586 (2012), pp. 2692–2704. doi:10.1016/j.febslet.2012.04.045.
  • A. Dey, J. Ellenberg, A. Farina, A.E. Coleman, T. Maruyama, S. Sciortino, J. Lippincott-Schwartz, and K. Ozato, A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition, Mol. Cell. Biol. 20 (2000), pp. 6537–6549. doi:10.1128/MCB.20.17.6537-6549.2000.
  • B.N. Devaiah, B.A. Lewis, N. Cherman, M.C. Hewitt, B.K. Albrecht, P.G. Robey, K. Ozato, R.J. Sims, and D.S. Singer, BRD4 is an atypical kinase that phosphorylates Serine2 of the RNA Polymerase II carboxy-terminal domain, Proc. Natl. Acad. Sci. U. S. A. 109 (2012), pp. 6927–6932. doi:10.1073/pnas.1120422109.
  • C. Dhalluin, J.E. Carlson, L. Zeng, C. He, A.K. Aggarwal, M.-M. Zhou, and M.-M. Zhou, Structure and ligand of a histone acetyltransferase bromodomain, Nature 399 (1999), pp. 491–496. doi:10.1038/20974.
  • L. Zeng and M.-M. Zhou, Bromodomain: An acetyl-lysine binding domain, FEBS Lett. 513 (2002), pp. 124–128. doi:10.1016/S0014-5793(01)03309-9.
  • R. Chen, J.H.N. Yik, Q.J. Lew, and S.-H. Chao, Brd4 and HEXIM1: Multiple roles in P-TEFb regulation and cancer, Biomed. Res. Int. 2014 (2014), pp. 232870–232870. doi:10.1155/2014/232870.
  • Z. Cheng, Y. Gong, Y. Ma, K. Lu, X. Lu, L.A. Pierce, R.C. Thompson, S. Muller, S. Knapp, and J. Wang, Inhibition of BET bromodomain targets genetically diverse glioblastoma, Clin. Cancer Res. 19 (2013), pp. 1748–1759. doi:10.1158/1078-0432.CCR-12-3066.
  • J. Wang and Z. Cheng, Abstract 1018: Inhibition of BET bromodomain targets genetically diverse glioblastoma, Cancer Res. 73 (2013), pp. 1018–1018.
  • M. Jung, M. Philpott, S. Muller, J. Schulze, V. Badock, U. Eberspacher, D. Moosmayer, B. Bader, N. Schmees, A. Fernandez-Montalvan, and B. Haendler, Affinity map of bromodomain protein 4 (BRD4), interactions with the histone H4 tail and the small molecule inhibitor JQ1, J. Biol. Chem. 289 (2014), pp. 9304–9319. doi:10.1074/jbc.M113.523019.
  • M.K. Jang, K. Mochizuki, M. Zhou, H.S. Jeong, J.N. Brady, and K. Ozato, The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription, Mol. Cell 19 (2005), pp. 523–534. doi:10.1016/j.molcel.2005.06.027.
  • Z. Yang, J.H. Yik, R. Chen, N. He, M.K. Jang, K. Ozato, and Q. Zhou, Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4, Mol. Cell 19 (2005), pp. 535–545. doi:10.1016/j.molcel.2005.06.029.
  • Z. Yang, N. He, and Q. Zhou, Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression, Mol. Cell. Biol. 28 (2008), pp. 967–976. doi:10.1128/MCB.01020-07.
  • K. Mochizuki, A. Nishiyama, M.K. Jang, A. Dey, A. Ghosh, T. Tamura, H. Natsume, H. Yao, and K. Ozato, The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase, J. Biol. Chem. 283 (2008), pp. 9040–9048. doi:10.1074/jbc.M707603200.
  • J. Bhadury, L.M. Nilsson, S.V. Muralidharan, L.C. Green, Z. Li, E.M. Gesner, H.C. Hansen, U.B. Keller, K.G. McLure, and J.A. Nilsson, BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma, Proc. Natl. Acad. Sci. U. S. A. 111 (2014), pp. E2721–2730. doi:10.1073/pnas.1406722111.
  • M.A. Dawson, E.J. Gudgin, S.J. Horton, G. Giotopoulos, E. Meduri, S. Robson, E. Cannizzaro, H. Osaki, M. Wiese, S. Putwain, C.Y. Fong, C. Grove, J. Craig, A. Dittmann, D. Lugo, P. Jeffrey, G. Drewes, K. Lee, L. Bullinger, R.K. Prinjha, T. Kouzarides, G.S. Vassiliou, and B.J.P. Huntly, Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia, Leukemia 28 (2014), pp. 311–320. doi:10.1038/leu.2013.338.
  • M. Hussong, S.T. Borno, M. Kerick, A. Wunderlich, A. Franz, H. Sultmann, B. Timmermann, H. Lehrach, M. Hirsch-Kauffmann, and M.R. Schweiger, The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response, Cell Death Dis. 5 (2014), pp. e1195. doi:10.1038/cddis.2014.157.
  • W.W. Lockwood, K. Zejnullahu, J.E. Bradner, and H. Varmus, Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins, Proc. Natl. Acad. Sci. U. S. A. 109 (2012), pp. 19408–19413. doi:10.1073/pnas.1216363109.
  • Y. Tang, S. Gholamin, S. Schubert, M.I. Willardson, A. Lee, P. Bandopadhayay, G. Bergthold, S. Masoud, B. Nguyen, N. Vue, B. Balansay, F. Yu, S. Oh, P. Woo, S. Chen, A. Ponnuswami, M. Monje, S.X. Atwood, R.J. Whitson, S. Mitra, S.H. Cheshier, J. Qi, R. Beroukhim, J.Y. Tang, R. Wechsler-Reya, A.E. Oro, B.A. Link, J.E. Bradner, and Y.-J. Cho, Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition, Nat. Med. 20 (2014), pp. 732–740. doi:10.1038/nm.3613.
  • J. Zuber, J. Shi, E. Wang, A.R. Rappaport, H. Herrmann, E.A. Sison, D. Magoon, J. Qi, K. Blatt, M. Wunderlich, M.J. Taylor, C. Johns, A. Chicas, J.C. Mulloy, S.C. Kogan, P. Brown, P. Valent, J.E. Bradner, S.W. Lowe, and C.R. Vakoc, RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia, Nature 478 (2011), pp. 524–528. doi:10.1038/nature10334.
  • F. Lamoureux, M. Baud’huin, L. Rodriguez Calleja, C. Jacques, M. Berreur, F. Redini, F. Lecanda, J.E. Bradner, D. Heymann, and B. Ory, Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle, Nat. Commun. 5 (2014), pp. 3511. doi:10.1038/ncomms4511.
  • X. Gao, X. Wu, X. Zhang, W. Hua, Y. Zhang, Y. Maimaiti, Z. Gao, and Y. Zhang, Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer, Biochem. Biophys. Res. Commun. 469 (2016), pp. 679–685. doi:10.1016/j.bbrc.2015.12.008.
  • D.S. Hewings, M. Wang, M. Philpott, O. Fedorov, S. Uttarkar, P. Filippakopoulos, S. Picaud, C. Vuppusetty, B. Marsden, S. Knapp, S.J. Conway, and T.D. Heightman, 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands, J. Med. Chem. 54 (2011), pp. 6761–6770. doi:10.1021/jm200640v.
  • X. Lucas, D. Wohlwend, M. Hugle, K. Schmidtkunz, S. Gerhardt, R. Schule, M. Jung, O. Einsle, and S. Gunther, 4-Acyl pyrroles: Mimicking acetylated lysines in histone code reading, Angew. Chem. Int. Ed. 52 (2013), pp. 14055–14059. doi:10.1002/anie.201307652.
  • M.A. Dawson, R.K. Prinjha, A. Dittmann, G. Giotopoulos, M. Bantscheff, W.I. Chan, S.C. Robson, C.W. Chung, C. Hopf, M.M. Savitski, C. Huthmacher, E. Gudgin, D. Lugo, S. Beinke, T.D. Chapman, E.J. Roberts, P.E. Soden, K.R. Auger, O. Mirguet, K. Doehner, R. Delwel, A.K. Burnett, P. Jeffrey, G. Drewes, K. Lee, B.J. Huntly, and T. Kouzarides, Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia, Nature 478 (2011), pp. 529–533. doi:10.1038/nature10509.
  • G. Zhang, A.N. Plotnikov, E. Rusinova, T. Shen, K. Morohashi, J. Joshua, L. Zeng, S. Mujtaba, M. Ohlmeyer, and M.M. Zhou, Structure-guided design of potent diazobenzene inhibitors for the BET bromodomains, J. Med. Chem. 56 (2013), pp. 9251–9264. doi:10.1021/jm401334s.
  • E. Nicodeme, K.L. Jeffrey, U. Schaefer, S. Beinke, S. Dewell, C.W. Chung, R. Chandwani, I. Marazzi, P. Wilson, H. Coste, J. White, J. Kirilovsky, C.M. Rice, J.M. Lora, R.K. Prinjha, K. Lee, and A. Tarakhovsky, Suppression of inflammation by a synthetic histone mimic, Nature 468 (2010), pp. 1119–1123. doi:10.1038/nature09589.
  • M. Boi, M. Todaro, V. Vurchio, E. Cvitkovic, M. Riveiro, F. Bertoni, and G. Inghirami, Abstract A219: OTX015, a bromodomain and extraterminal inhibitor, represents a novel agent for ALK positive anaplastic large cell lymphoma, Mol. Cancer Ther. 12 (2014), pp. A219–A219.
  • S. Picaud, C. Wells, I. Felletar, D. Brotherton, S. Martin, P. Savitsky, B. Diez-Dacal, M. Philpott, C. Bountra, H. Lingard, O. Fedorov, S. Muller, P.E. Brennan, S. Knapp, and P. Filippakopoulos, RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain, Proc. Natl. Acad. Sci. U. S. A. 110 (2013), pp. 19754–19759. doi:10.1073/pnas.1310658110.
  • J.M. Garnier, P.P. Sharp, and C.J. Burns, BET bromodomain inhibitors: A patent review, Expert. Opin. Ther. Pat. 24 (2014), pp. 185–199. doi:10.1517/13543776.2014.859244.
  • P. Filippakopoulos and S. Knapp, Targeting bromodomains: Epigenetic readers of lysine acetylation, Nat. Rev. Drug Discov. 13 (2014), pp. 337–356. doi:10.1038/nrd4286.
  • L.L. Duan, G.Q. Feng, and Q.G. Zhang, Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy, Sci. Rep. 6 (2016), pp. 31488. doi:10.1038/srep31488.
  • G. Hu, Z. Cao, S. Xu, W. Wang, and J. Wang, Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods, Sci. Rep. 5 (2015), pp. 16481–16481. doi:10.1038/srep16481.
  • G. Li, H. Shen, D. Zhang, Y. Li, and H. Wang, Coarse-grained modeling of nucleic acids using anisotropic gay-berne and electric multipole potentials, J. Chem. Theory Comput. 12 (2016), pp. 676–693. doi:10.1021/acs.jctc.5b00903.
  • M.A. Azam, S. Jupudi, N. Saha, and R.K. Paul, Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity, SAR QSAR Environ. Res. 30 (2019), pp. 1–20. doi:10.1080/1062936X.2018.1539034.
  • P. Kamsri, A. Punkvang, S. Hannongbua, K. Suttisintong, P. Kittakoop, J. Spencer, A.J. Mulholland, and P. Pungpo, In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations, SAR QSAR Environ. Res. 30 (2019), pp. 775–800. doi:10.1080/1062936X.2019.1658218.
  • J. Chen, J. Wang, B. Yin, L. Pang, W. Wang, and W. Zhu, Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions, ACS Chem. Neurosci. 10 (2019), pp. 4303–4318. doi:10.1021/acschemneuro.9b00348.
  • J. Zhao, B. Yin, H. Sun, L. Pang, and J. Chen, Identifying hot spots of inhibitor-CDK2 bindings by computational alanine scanning, Chem. Phys. Lett. 747 (2020), pp. 137329. doi:10.1016/j.cplett.2020.137329.
  • J. Chen, Z. Liang, W. Wang, C. Yi, S. Zhang, and Q. Zhang, Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations, Sci. Rep. 4 (2014), pp. 6872.
  • F. Yan, X. Liu, S. Zhang, J. Su, Q. Zhang, and J. Chen, Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations, J. Biomol. Struct. Dyn. 36 (2018), pp. 3636–3650. doi:10.1080/07391102.2017.1394221.
  • S. Majumdar, S.C. Basak, C.N. Lungu, M.V. Diudea, and G.D. Grunwald, Mathematical structural descriptors and mutagenicity assessment: A study with congeneric and diverse datasets, SAR QSAR Environ. Res. 29 (2018), pp. 579–590. doi:10.1080/1062936X.2018.1496475.
  • J. Wang, Q. Shao, B.P. Cossins, J. Shi, K. Chen, and W. Zhu, Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters, J. Biomol. Struct. Dyn. 34 (2016), pp. 163–176. doi:10.1080/07391102.2015.1019928.
  • X. Jia, M. Wang, Y. Shao, G. Konig, B.R. Brooks, J.Z. Zhang, and Y. Mei, Calculations of solvation free energy through energy reweighting from molecular mechanics to quantum mechanics, J. Chem. Theory Comput. 12 (2016), pp. 499–511. doi:10.1021/acs.jctc.5b00920.
  • E.L. Wu, Y. Mei, K. Han, and J.Z. Zhang, Quantum and molecular dynamics study for binding of macrocyclic inhibitors to human alpha-thrombin, Biophys. J. 92 (2007), pp. 4244–4253. doi:10.1529/biophysj.106.099150.
  • T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inf. Model. 51 (2011), pp. 69–82. doi:10.1021/ci100275a.
  • J. Chen, X. Wang, T. Zhu, Q. Zhang, and J.Z. Zhang, A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 protease based on thermodynamic integration and MM-PBSA methods, J. Chem. Inf. Model. 55 (2015), pp. 1903–1913. doi:10.1021/acs.jcim.5b00173.
  • U. Raj, H. Kumar, and P.K. Varadwaj, Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors, J. Biomol. Struct. Dyn. 35 (2017), pp. 2351–2362. doi:10.1080/07391102.2016.1217276.
  • K.K. Kumar, B.U. Devi, and P. Neeraja, Molecular activities and ligand-binding specificities of StAR-related lipid transfer domains: Exploring integrated in silico methods and ensemble-docking approaches, SAR QSAR Environ. Res. 29 (2018), pp. 483–501. doi:10.1080/1062936X.2018.1462847.
  • S. Bhuvaneshwari and K. Sankaranarayanan, Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach, SAR QSAR Environ. Res. 30 (2019), pp. 81–108. doi:10.1080/1062936X.2019.1566172.
  • J. Chen, X. Wang, L. Pang, J.Z.H. Zhang, and T. Zhu, Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations, Nucleic Acids Res. 47 (2019), pp. 6618–6631. doi:10.1093/nar/gkz499.
  • M. Kuang, J. Zhou, L. Wang, Z. Liu, J. Guo, and R. Wu, Binding kinetics versus affinities in BRD4 inhibition, J. Chem. Inf. Model. 55 (2015), pp. 1926–1935. doi:10.1021/acs.jcim.5b00265.
  • R. Tumdam, A. Kumar, N. Subbarao, and B.S. Balaji, In silico study directed towards identification of novel high-affinity inhibitors targeting an oncogenic protein: BRD4-BD1, SAR QSAR Environ. Res. 29 (2018), pp. 975–996. doi:10.1080/1062936X.2018.1537301.
  • C. Muvva, E.R. Singam, S.S. Raman, and V. Subramanian, Structure-based virtual screening of novel, high-affinity BRD4 inhibitors, Mol. Biosyst. 10 (2014), pp. 2384–2397. doi:10.1039/C4MB00243A.
  • Y. Wang, L.F. Wang, L.L. Zhang, H.B. Sun, and J. Zhao, Molecular mechanism of inhibitor bindings to bromodomain-containing protein 9 explored based on molecular dynamics simulations and calculations of binding free energies, SAR QSAR Environ. Res. 31 (2020), pp. 149–170. doi:10.1080/1062936X.2019.1701075.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations, J. Biomol. Struct. Dyn. 36 (2018), pp. 1212–1224. doi:10.1080/07391102.2017.1317666.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, Insight into selective mechanism of class of I-BRD9 inhibitors toward BRD9 based on molecular dynamics simulations, Chem. Biol. Drug Des. 93 (2019), pp. 163–176. doi:10.1111/cbdd.13398.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A theoretical insight into selectivity of inhibitors toward two domains of bromodomain-containing protein 4 using molecular dynamics simulations, Chem. Biol. Drug Des. 91 (2018), pp. 828–840. doi:10.1111/cbdd.13148.
  • L. Wang, Y. Wang, H. Sun, J. Zhao, and Q. Wang, Theoretical insight into molecular mechanisms of inhibitor bindings to bromodomain-containing protein 4 using molecular dynamics simulations and calculations of binding free energies, Chem. Phys. Lett. 736 (2019), pp. 136785. doi:10.1016/j.cplett.2019.136785.
  • M. Zhang, Y. Zhang, M. Song, X. Xue, J. Wang, C. Wang, C. Zhang, C. Li, Q. Xiang, L. Zou, X. Wu, C. Wu, B. Dong, W. Xue, Y. Zhou, H. Chen, D. Wu, K. Ding, and Y. Xu, Structure-based discovery and optimization of benzo[d]isoxazole derivatives as potent and selective bet inhibitors for potential treatment of castration-resistant prostate cancer (CRPC), J. Med. Chem. 61 (2018), pp. 3037–3058. doi:10.1021/acs.jmedchem.8b00103.
  • M. Amaral, D.B. Kokh, J. Bomke, A. Wegener, H.P. Buchstaller, H.M. Eggenweiler, P. Matias, C. Sirrenberg, R.C. Wade, and M. Frech, Protein conformational flexibility modulates kinetics and thermodynamics of drug binding, Nat. Commun. 8 (2017), pp. 2276. doi:10.1038/s41467-017-02258-w.
  • D.L. Penkler, C. Atilgan, and Ö. Tastan Bishop, Allosteric modulation of human Hsp90α conformational dynamics, J. Chem. Inf. Model. 58 (2018), pp. 383–404. doi:10.1021/acs.jcim.7b00630.
  • D.A. Case, T.E. Cheatham 3rd, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688. doi:10.1002/jcc.20290.
  • D.C. Bas, D.M. Rogers, and J.H. Jensen, Very fast prediction and rationalization of pKa values for protein-ligand complexes, Proteins 73 (2008), pp. 765–783. doi:10.1002/prot.22102.
  • H. Li, A.D. Robertson, and J.H. Jensen, Very fast empirical prediction and rationalization of protein pKa values, Proteins 61 (2005), pp. 704–721. doi:10.1002/prot.20660.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • A. Jakalian, B. Bush, D. Jack, and C. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method, J. Comput. Chem. 21 (2000), pp. 132–146. doi:10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P.
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935. doi:10.1063/1.445869.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald, J. Chem. Theory Comput. 9 (2013), pp. 3878–3888. doi:10.1021/ct400314y.
  • T.G. Coleman, H.C. Mesick, and R.L. Darby, Numerical integration: A method for improving solution stability in models of the circulation, Ann. Biomed. Eng. 5 (1977), pp. 322–328. doi:10.1007/BF02367312.
  • J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, and R.D. Skeel, Langevin stabilization of molecular dynamics, J. Chem. Phys. 114 (2001), pp. 2090–2098. doi:10.1063/1.1332996.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593. doi:10.1063/1.470117.
  • C. Suri and P.K. Naik, Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA), to predict noscapinoid binding to γ-tubulin dimer, SAR QSAR Environ. Res. 26 (2015), pp. 507–519. doi:10.1080/1062936X.2015.1070200.
  • W. Wang and P.A. Kollman, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J. Mol. Biol. 303 (2000), pp. 567–582. doi:10.1006/jmbi.2000.4057.
  • W. Wang and P.A. Kollman, Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance, Proc. Natl. Acad. Sci. U. S. A. 98 (2001), pp. 14937–14942. doi:10.1073/pnas.251265598.
  • J. Wang, P. Morin, W. Wang, and P.A. Kollman, Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA, J. Am. Chem. Soc. 123 (2001), pp. 5221–5230. doi:10.1021/ja003834q.
  • C. Wang, D.A. Greene, L. Xiao, R. Qi, and R. Luo, Recent developments and applications of the MMPBSA method, Front. Mol. Biosci. 4 (2018), pp. 1–18.
  • H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring, Phys. Chem. Chem. Phys. 16 (2014), pp. 22035–22045. doi:10.1039/C4CP03179B.
  • H. Sun, Y. Li, S. Tian, L. Xu, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set, Phys. Chem. Chem. Phys. 16 (2014), pp. 16719–16729. doi:10.1039/C4CP01388C.
  • S. Tian, J. Zeng, X. Liu, J. Chen, J.Z.H. Zhang, and T. Zhu, Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling, Phys. Chem. Chem. Phys. 21 (2019), pp. 22103–22112. doi:10.1039/C9CP03598B.
  • B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, and A.E. Roitberg, MMPBSA.py: An efficient program for end-state free energy calculations, J. Chem. Theory Comput. 8 (2012), pp. 3314–3321. doi:10.1021/ct300418h.
  • W. Cheng, J. Chen, Z. Liang, G. Li, C. Yi, W. Wang, and K. Wang, A computational analysis of interaction mechanisms of peptide and non-peptide inhibitors with MDMX based on molecular dynamics simulation, Comput. Theor. Chem. 984 (2012), pp. 43–50. doi:10.1016/j.comptc.2012.01.010.
  • T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins 11 (1991), pp. 205–217. doi:10.1002/prot.340110305.
  • J. Chen, X. Liu, S. Zhang, J. Chen, H. Sun, L. Zhang, and Q. Zhang, Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses, Phys. Chem. Chem. Phys. 22 (2020), pp. 2262–2275. doi:10.1039/C9CP05704H.
  • Y. Gao, T. Zhu, and J. Chen, Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method, Chem. Phys. Lett. 706 (2018), pp. 400–408. doi:10.1016/j.cplett.2018.06.040.
  • J. Chen, L. Pang, W. Wang, L. Wang, J.Z.H. Zhang, and T. Zhu, Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations, J. Biomol. Struct. Dyn. 38 (2020), pp. 985–996. doi:10.1080/07391102.2019.1591304.
  • D.R. Roe and T.E. Cheatham, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • R.M. Levy, A.R. Srinivasan, W.K. Olson, and J.A. McCammon, Quasi-harmonic method for studying very low frequency modes in proteins, Biopolymers 23 (1984), pp. 1099–1112. doi:10.1002/bip.360230610.
  • A. Amadei, A.B.M. Linssen, and H.J.C. Berendsen, Essential dynamics of proteins, Proteins 17 (1993), pp. 412–425. doi:10.1002/prot.340170408.
  • M. Laberge and T. Yonetani, Molecular dynamics simulations of hemoglobin a in different states and bound to DPG: Effector-linked perturbation of tertiary conformations and HbA concerted dynamics, Biophys. J. 94 (2008), pp. 2737–2751. doi:10.1529/biophysj.107.114942.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996), pp. 33–38. doi:10.1016/0263-7855(96)00018-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.