1,765
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Extending the identification of structural features responsible for anti-SARS-CoV activity of peptide-type compounds using QSAR modelling

, , , &
Pages 643-654 | Received 06 May 2020, Accepted 15 Jun 2020, Published online: 27 Aug 2020

References

  • A.R. Fehr and S. Perlman, Coronaviruses: An overview of their replication and pathogenesis, in Coronaviruses: Methods and Protocols, H.J. Maier, E. Bickerton, and P. Britton, eds., Springer New York, New York, 2015, pp. 1–23.
  • L. Zhao, B.K. Jha, A. Wu, R. Elliott, J. Ziebuhr, A.E. Gorbalenya, R.H. Silverman, and S.R. Weiss, Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology, Cell Host Microbe 11 (2012), pp. 607–616. doi: 10.1016/j.chom.2012.04.011.
  • X.-Y. Ge, J.-L. Li, X.-L. Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.-J. Zhang, C.-M. Luo, B. Tan, N. Wang, Y. Zhu, G. Crameri, S.-Y. Zhang, L.-F. Wang, P. Daszak, and Z.-L. Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature 503 (2013), pp. 535–538. doi: 10.1038/nature12711.
  • Y. Chen and D. Guo, Molecular mechanisms of coronavirus RNA capping and methylation, Virol. Sin. 31 (2016), pp. 3–11. doi: 10.1007/s12250-016-3726-4.
  • J. Xu, S. Zhao, T. Teng, A.E. Abdalla, W. Zhu, L. Xie, Y. Wang, and X. Guo, Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses 12 (2020), pp. 244. doi: 10.3390/v12020244.
  • Anonymous, Virology: Coronaviruses, Nature 220 (1968), pp. 650. doi: 10.1038/220650b0.
  • S.R. Weiss and S. Navas-Martin, Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus, Microbiol. Mol. Biol. Rev. 69 (2005), pp. 635–664. doi: 10.1128/mmbr.69.4.635-664.2005.
  • K. McIntosh, Coronaviruses: A comparative review, in Current Topics in Microbiology and Immunology/Ergebnisse Der Mikrobiologie Und Immunitätsforschung, W. Arber, R. Haas, W. Henle, P.H. Hofschneider, N.K. Jerne, P. Koldovský, H. Koprowski, O. Maaløe, R. Rott, H.G. Schweiger, M. Sela, L. Syruček, P.K. Vogt, and E. Wecker, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1974, pp. 85–129
  • J.M. González, P. Gomez-Puertas, D. Cavanagh, A.E. Gorbalenya, and L. Enjuanes, A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae, Arch. Virol. 148 (2003), pp. 2207–2235. doi: 10.1007/s00705-003-0162-1
  • J. Cui, F. Li, and Z.-L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17 (2019), pp. 181–192. doi: 10.1038/s41579-018-0118-9
  • S. Cauchemez, M.D. Van Kerkhove, S. Riley, C.A. Donnelly, C. Fraser, and N.M. Ferguson, Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart, Eurosurveillance 18 (2013), pp. 20503. doi: 10.2807/ese.18.24.20503-en
  • L. Liu, T. Wang, and J. Lu, The prevalence, origin, and prevention of six human coronaviruses, Virol. Sin. 31 (2016), pp. 94–99. doi: 10.1007/s12250-015-3687-z
  • A.E. Gorbalenya, S.C. Baker, R.S. Baric, R.J. de Groot, C. Drosten, A.A. Gulyaeva, B.L. Haagmans, C. Lauber, A.M. Leontovich, B.W. Neuman, D. Penzar, S. Perlman, L.L.M. Poon, D. Samborskiy, I.A. Sidorov, I. Sola, and J. Ziebuhr, Severe acute respiratory syndrome-related coronavirus: The species and its viruses – A statement of the Coronavirus Study Group, bioRxiv (2020). doi: 10.1101/2020.02.07.937862
  • K. Dhama, K. Sharun, R. Tiwari, M. Dadar, Y.S. Malik, K.P. Singh, and W. Chaicumpa, COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics, Hum. Vacc. Immunother. (2020), pp. 1–7. doi: 10.1080/21645515.2020.1735227
  • N.H.L. Leung, D.K.W. Chu, E.Y.C. Shiu, K.-H. Chan, J.J. McDevitt, B.J.P. Hau, H.-L. Yen, Y. Li, D.K.M. Ip, J.S.M. Peiris, W.-H. Seto, G.M. Leung, D.K. Milton, and B.J. Cowling, Respiratory virus shedding in exhaled breath and efficacy of face masks, Nat. Med. 26 (2020), pp. 676–680. doi: 10.1038/s41591-020-0843-2
  • W. Luerang, T. Khammee, W. Kumpum, S. Suksamrarn, V. Chatsudthipong, and C. Muanprasat, Hydroxyxanthone as an inhibitor of cAMP-activated apical chloride channel in human intestinal epithelial cell, Life Sci. 90 (2012), pp. 988–994. doi: 10.1016/j.lfs.2012.05.001.
  • Similarities and differences – COVID-19 and influenza. Available at https://www.paho.org/hq/index.php?option=com_content&view=article&id=15760:similarities-and-differences-covid-19-and-influenza&catid=740&lang=pt&Itemid=1926, 2020.
  • S.J.Y. Macalino, V. Gosu, S. Hong, and S. Choi, Role of computer-aided drug design in modern drug discovery, Arch. Pharm. Res. 38 (2015), pp. 1686–1701. doi: 10.1007/s12272-015-0640-5.
  • V.H. Masand, N.N.E. El-Sayed, D.T. Mahajan, and V. Rastija, QSAR analysis for 6-arylpyrazine-2-carboxamides as Trypanosoma brucei inhibitors, SAR QSAR Environ. Res. 28 (2017), pp. 165–177. doi: 10.1080/1062936x.2017.1292407
  • V.H. Masand, N.N.E. El-Sayed, D.T. Mahajan, A.G. Mercader, A.M. Alafeefy, and I.G. Shibi, QSAR modeling for anti-human African trypanosomiasis activity of substituted 2-Phenylimidazopyridines, J. Mol. Struc. 1130 (2017), pp. 711–718. doi: 10.1016/j.molstruc.2016.11.012.
  • V.H. Masand, D.T. Mahajan, A.K. Maldhure, and V. Rastija, Quantitative structure–activity relationships (QSARs) and pharmacophore modeling for human African trypanosomiasis (HAT) activity of pyridyl benzamides and 3-(oxazolo[4,5-b]pyridin-2-yl)anilides, Med. Chem. Res. 25 (2016), pp. 2324–2334. doi: 10.1007/s00044-016-1664-1
  • E. Pourbasheer, S. Shokouhi Tabar, V.H. Masand, R. Aalizadeh, and M.R. Ganjali, 3D-QSAR and docking studies on adenosine A2A receptor antagonists by the CoMFA method, SAR QSAR Environ. Res. 26 (2015), pp. 461–477. doi: 10.1080/1062936X.2015.1049666.
  • T. Fujita and D.A. Winkler, Understanding the roles of the “Two QSARs”, J. Chem. Inf. Model. 56 (2016), pp. 269–274. doi: 10.1021/acs.jcim.5b00229
  • T. Pillaiyar, M. Manickam, V. Namasivayam, Y. Hayashi, and S.-H. Jung, An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy, J. Med. Chem. 59 (2016), pp. 6595–6628. doi: 10.1021/acs.jmedchem.5b01461.
  • P. Thanigaimalai, S. Konno, T. Yamamoto, Y. Koiwai, A. Taguchi, K. Takayama, F. Yakushiji, K. Akaji, Y. Kiso, Y. Kawasaki, S.-E. Chen, A. Naser-Tavakolian, A. Schön, E. Freire, and Y. Hayashi, Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: Structure–activity relationship study, Eur. J. Med. Chem. 65 (2013), pp. 436–447. doi: 10.1016/j.ejmech.2013.05.005
  • P. Thanigaimalai, S. Konno, T. Yamamoto, Y. Koiwai, A. Taguchi, K. Takayama, F. Yakushiji, K. Akaji, S.-E. Chen, A. Naser-Tavakolian, A. Schön, E. Freire, and Y. Hayashi, Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: Design, synthesis, biological evaluation, and docking studies, Eur. J. Med. Chem. 68 (2013), pp. 372–384. doi: 10.1016/j.ejmech.2013.07.037.
  • S. Konno, P. Thanigaimalai, T. Yamamoto, K. Nakada, R. Kakiuchi, K. Takayama, Y. Yamazaki, F. Yakushiji, K. Akaji, Y. Kiso, Y. Kawasaki, S.-E. Chen, E. Freire, and Y. Hayashi, Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety, Bioorg. Med. Chem. 21 (2013), pp. 412–424. doi: 10.1016/j.bmc.2012.11.017.
  • L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, and R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science 368 (2020), pp. 409–412. doi: 10.1126/science.abb3405.
  • L. Zhang, D. Lin, Y. Kusov, Y. Nian, Q. Ma, J. Wang, A. von Brunn, P. Leyssen, K. Lanko, J. Neyts, A. de Wilde, E.J. Snijder, H. Liu, and R. Hilgenfeld, α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment, J. Med. Chem. 63 (2020), pp. 4562–4578. doi: 10.1021/acs.jmedchem.9b01828.
  • N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, and G.R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminf. 3 (2011). doi: 10.1186/1758-2946-3-33
  • J.A. Rackers, Z. Wang, C. Lu, M.L. Laury, L. Lagardère, M.J. Schnieders, J.-P. Piquemal, P. Ren, and J.W. Ponder, Tinker 8: Software tools for molecular design, J. Chem. Theory Comput. 14 (2018), pp. 5273–5289. doi: 10.1021/acs.jctc.8b00529
  • P. Tosco, T. Balle, and F. Shiri, Open3DALIGN: An open-source software aimed at unsupervised ligand alignment, J. Comput. Aid. Mol. Des. 25 (2011), pp. 777–783. doi: 10.1007/s10822-011-9462-9.
  • V.H. Masand and V. Rastija, PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors, Chemom. Intell. Lab. Syst. 169 (2017), pp. 12–18. doi: 10.1016/j.chemolab.2017.08.003.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi: 10.1002/jcc.21707
  • V.H. Masand, D.T. Mahajan, A.M. Alafeefy, S.N. Bukhari, and N.N. Elsayed, Optimization of antiproliferative activity of substituted phenyl 4-(2-oxoimidazolidin-1-yl) benzenesulfonates: QSAR and CoMFA analyses, Eur. J. Pharm. Sci. 77 (2015), pp. 230–237. doi: 10.1016/j.ejps.2015.06.001
  • P. Gramatica, S. Cassani, and A. Sangion, PBT assessment and prioritization by PBT Index and consensus modeling: Comparison of screening results from structural models, Environ. Int. 77 (2015), pp. 25–34. doi: 10.1016/j.envint.2014.12.012
  • P. Gramatica, S. Cassani, and N. Chirico, QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS, J. Comput. Chem. 35 (2014), pp. 1036–1044. doi: 10.1002/jcc.23576.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132. doi: 10.1002/jcc.23361
  • V.H. Masand, D.T. Mahajan, G.M. Nazeruddin, T.B. Hadda, V. Rastija, and A.M. Alfeefy, Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model, Med. Chem. Res. 24 (2015), pp. 1241–1264. doi: 10.1007/s00044-014-1193-8
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010. doi: 10.1021/jm4004285
  • T.M. Martin, P. Harten, D.M. Young, E.N. Muratov, A. Golbraikh, H. Zhu, and A. Tropsha, Does rational selection of training and test sets improve the outcome of QSAR modeling? J. Chem. Inf. Model. 52 (2012), pp. 2570–2578. doi: 10.1021/ci300338w.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058. doi: 10.1021/ci300084j.
  • V. Consonni, R. Todeschini, D. Ballabio, and F. Grisoni, On the misleading use of QF32 for QSAR model comparison, Mol. Inform. 38 (2019), pp. 1800029. doi: 10.1002/minf.201800029
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678. doi: 10.1021/ci900115y.
  • P. Gramatica, External evaluation of QSAR models, in addition to cross-validation: Verification of predictive capability on totally new chemicals, Mol. Inform. 33 (2014), pp. 311–314. doi: 10.1002/minf.201400030
  • P. Gramatica, On the development and validation of QSAR models, Meth. Mol. Biol. 930 (2013), pp. 499–526. doi: 10.1007/978-1-62703-059-5_21.
  • P. Gramatica, S. Cassani, P.P. Roy, S. Kovarich, C.W. Yap, and E. Papa, QSAR modeling is not push a button and find a correlation: A case study of toxicity of (benzo-)triazoles on algae, Mol. Inform. 31 (2012), pp. 817–835. https://doi.org/10.1002/minf.201200075 doi: 10.1002/minf.201200075.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi: 10.1021/ci200211n.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.