701
Views
9
CrossRef citations to date
0
Altmetric
Research Article

SAR and QSAR research on tyrosinase inhibitors using machine learning methods

, , &
Pages 85-110 | Received 11 Oct 2020, Accepted 07 Dec 2020, Published online: 01 Feb 2021

References

  • A. Sanchez-Ferrer, J.N. Rodriguez-Lopez, F. Garcia-Canovas, and F. Garcia-Carmona, Tyrosinase: A comprehensive review of its mechanism, BBA-Protein Struct. M. 1247 (1995), pp. 1–11. doi:10.1016/0167-4838(94)00204-T.
  • W.T. Ismaya, H.J. Rozeboom, A. Weijn, J.J. Mes, F. Fusetti, H.J. Wichers, and B.W. Dijkstra, Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone, Biochemistry-US 50 (2011), pp. 5477–5486. doi:10.1021/bi200395t.
  • I. Kubo, I. Kinst-Hori, S.K. Chaudhuri, Y. Kubo, Y. Sánchez, and T. Ogura, Flavonols from heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria, Bioorg. Med. Chem. 8 (2000), pp. 1749–1755. doi:10.1016/S0968-0896(00)00102-4.
  • C. Olivares, J.C. Garcia-Borron, and F. Solano, Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. implications to the catalytic cycle, Biochemistry 41 (2002), pp. 679–686. doi:10.1021/bi011535n.
  • G.E. Costin and V.J. Hearing, Human skin pigmentation: Melanocytes modulate skin color in response to stress, Faseb J. 21 (2007), pp. 976–994. doi:10.1096/fj.06-6649rev.
  • S.J. Ahn, M. Koketsu, H. Ishihara, S.M. Lee, S.K. Ha, K.H. Lee, T.H. Kang, and S.Y. Kim, Regulation of melanin synthesis by selenium-containing carbohydrates, Chem. Pharm. Bull. 54 (2006), pp. 281–286. doi:10.1248/cpb.54.281.
  • K. Iozumi, G.E. Hoganson, R. Pennella, M.A. Everett, and B.B. Fuller, Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes, J. Invest. Dermatol. 100 (1993), pp. 806–811. doi:10.1111/1523-1747.ep12476630.
  • G. Li, H.K. Ju, H.W. Chang, Y. Jahng, S.H. Lee, and J.K. Son, Melanin biosynthesis inhibitors from the bark of Machilus thunbergii, Biol. Pharm. Bull. 26 (2003), pp. 1039–1041. doi:10.1248/bpb.26.1039.
  • N. Unver, P. Freyschmidt-Paul, S. Horster, H. Wenck, F. Stab, T. Blatt, and H.P. Elsasser, Alterations in the epidermal-dermal melanin axis and factor xiiia melanophages in senile lentigo and ageing skin, Br. J. Dermatol. 155 (2006), pp. 119–128. doi:10.1111/j.1365-2133.2006.07210.x.
  • M. Brenner and V.J. Hearing, The protective role of melanin against uv damage in human skin, Photochem. Photobiol. 84 (2008), pp. 539–549. doi:10.1111/j.1751-1097.2007.00226.x.
  • M. McCarthy, Us melanoma prevalence has doubled over past 30 years, BMJ-Brit. Med. J. 350 (2015), pp. h3074. doi:10.1136/bmj.h3074.
  • C.E. DeSantis, C.C. Lin, A.B. Mariotto, R.L. Siegel, K.D. Stein, J.L. Kramer, R. Alteri, A.S. Robbins, and A. Jemal, Cancer treatment and survivorship statistics, 2014, Ca-Cancer. J. Clin. 64 (2014), pp. 252–271. doi:10.3322/caac.21235.
  • J.L. Boyle, H.M. Haupt, J.B. Stern, and H.A.B. Mulhaupt, Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors: An immunohistochemical study, Arch. Pathol. Lab. Med. 126 (2002), pp. 816–822. doi:10.1043/0003-9985(2002)126.
  • C. Altaner, Prodrug cancer gene therapy, Cancer. Lett. 270 (2008), pp. 191–201. doi:10.1016/j.canlet.2008.04.023.
  • E.L. Cavalieri, K.M. Li, N. Balu, M. Saeed, P. Devanesan, S. Higginbotham, J. Zhao, M.L. Gross, and E.G. Rogan, Catechol ortho-quinones: The electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases, Carcinogenesis 23 (2002), pp. 1071–1077. doi:10.1093/carcin/23.6.1071.
  • T. Hasegawa, Tyrosinase-expressing neuronal cell line as in vitro model of parkinson’s disease, Int. J. Mol. Sci. 11 (2010), pp. 1082–1089. doi:10.3390/ijms11031082.
  • I. Tessari, M. Bisaglia, F. Valle, B. Samori, E. Bergantino, S. Mammi, and L. Bubacco, The reaction of alpha-synuclein with tyrosinase: Possible implications for parkinson disease, J. Biol. Chem. 283 (2008), pp. 16808–16817. doi:10.1074/jbc.M709014200.
  • E. Greggio, E. Bergantino, D. Carter, R. Ahmad, G.-E. Costin, V.J. Hearing, J. Clarimon, A. Singleton, J. Eerola, O. Hellström, P.J. Tienari, D.W. Miller, A. Beilina, L. Bubacco, and M.R. Cookson, Tyrosinase exacerbates dopamine toxicity but is not genetically associated with parkinson’s disease, J. Neurochem. 93 (2005), pp. 246–256. doi:10.1111/j.1471-4159.2005.03019.x.
  • T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors, J. Enzym. Inhib. Med. Chem. 32 (2017), pp. 403–425. doi:10.1080/14756366.2016.1256882.
  • S. Zolghadri, A. Bahrami, M.T.H. Khan, J. Munoz-Munoz, F. Garcia-Molina, F. Garcia-Canovas, and A.A. Saboury, A comprehensive review on tyrosinase inhibitors, J. Enzym. Inhib. Med. Chem. 34 (2019), pp. 279–309. doi:10.1080/14756366.2018.1545767.
  • Y.S. Lee, J.H. Park, M.H. Kim, S.H. Seo, and H.J. Kim, Synthesis of tyrosinase inhibitory kojic acid derivative, Arch. Pharm. 339 (2006), pp. 111–114. doi:10.1002/ardp.200500213.
  • K. Sakuma, M. Ogawa, K. Sugibayashi, K. Yamada, and K. Yamamoto, Relationship between tyrosinase inhibitory action and oxidation-reduction potential of cosmetic whitening ingredients and phenol derivatives, Arch. Pharm. Res. 22 (1999), pp. 335–339. doi:10.1007/BF02979054.
  • K. Maeda and M. Fukuda, Arbutin: Mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther. 276 (1996), pp. 765–769.
  • K.U. Schallreuter and J.W. Wood, A possible mechanism of action for azelaic acid in the human epidermis, Arch. Dermatol. Res. 282 (1990), pp. 168–171. doi:10.1007/bf00372617.
  • Q.X. Chen, L.N. Ke, K.K. Song, H. Huang, and X.D. Liu, Inhibitory effects of hexylresorcinol and dodecylresorcinol on mushroom (Agaricus bisporus) tyrosinase, Protein J. 23 (2004), pp. 135–141. doi:10.1023/B:JOPC.0000020080.21417.ff.
  • N. Fujimoto, H. Onodera, K. Mitsumori, T. Tamura, S. Maruyama, and A. Ito, Changes in thyroid function during development of thyroid hyperplasia induced by kojic acid in f344 rats, Carcinogenesis 20 (1999), pp. 1567–1571. doi:10.1093/carcin/20.8.1567.
  • H. Zhou, J.K. Kepa, D. Siegel, S. Miura, Y. Hiraki, and D. Ross, Benzene metabolite hydroquinone up-regulates chondromodulin-I and inhibits tube formation in human bone marrow endothelial cells, Mol. Pharmacol. 76 (2009), pp. 579–587. doi:10.1124/mol.109.057323.
  • V. Spinola, B. Mendes, J.S. Camara, and P.C. Castilho, Effect of time and temperature on vitamin c stability in horticultural extracts. Uhplc-pda vs iodometric titration as analytical methods, Lwt-Food Sci. Technol. 50 (2013), pp. 489–495. doi:10.1016/j.lwt.2012.08.020.
  • S.J.Y. Macalino, V. Gosu, S.H. Hong, and S. Choi, Role of computer-aided drug design in modern drug discovery, Arch. Pharm. Res. 38 (2015), pp. 1686–1701. doi:10.1007/s12272-015-0640-5.
  • Y. Xi, Z. Qin, and A. Yan, SAR and QSAR models of cyclooxygenase-1 (cox-1) inhibitors, SAR QSAR Environ. Res. 29 (2018), pp. 755–784. doi:10.1080/1062936x.2018.1513952.
  • Z. Qin and A. Yan, QSAR studies on hepatitis c virus ns5a protein tetracyclic inhibitors in wild type and mutants by CoMFA and CoMSIA, SAR QSAR Environ. Res. 31 (2020), pp. 281–311. doi:10.1080/1062936x.2020.1740889.
  • B. De, I. Adhikari, A. Nandy, A. Saha, and B.B. Goswami, In silico modelling of azole derivatives with tyrosinase inhibition ability: Application of the models for activity prediction of new compounds, Comput. Biol. Chem. 74 (2018), pp. 105–114. doi:10.1016/j.compbiolchem.2018.03.007.
  • S. Ghayas, M.A. Masood, R. Parveen, M. Aquib, M.A. Farooq, P. Banerjee, S. Sambhare, and R. Bavi, 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase, J. Biomol. Struct. Dyn. 38 (2020), pp. 2916–2927. doi:10.1080/07391102.2019.1647287.
  • H.H. Dong, J. Liu, X.R. Liu, Y.Y. Yu, and S.W. Cao, Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors, Bioorg. Chem. 75 (2017), pp. 106–117. doi:10.1016/j.bioorg.2017.07.002
  • Z.X. Zhou, J.R. Zhuo, S.J. Yan, and L. Ma, Design and synthesis of 3,5-diaryl-4,5-dihydro-1h-pyrazoles as new tyrosinase inhibitors, Bioorg. Med. Chem. 21 (2013), pp. 2156–2162. doi:10.1016/j.bmc.2012.12.054
  • Z.H. Zhang, J.B. Liu, F.Y. Wu, and L.Z. Zhao, Inhibitory effects of substituted cinnamic acid esters on mushroom tyrosinase, Lett. Drug Des. Discov. 10 (2013), pp. 529–534. doi:10.2174/1570180811310060009
  • A. You, J. Zhou, S.C. Song, G.X. Zhu, H.C. Song, and W. Yi, Rational design, synthesis and structure-activity relationships of 4-alkoxy- and 4-acyloxy-phenylethylenethiosemicarbazone analogues as novel tyrosinase inhibitors, Bioorg. Med. Chem. 23 (2015), pp. 924–931. doi:10.1016/j.bmc.2015.01.024
  • A. You, J. Zhou, S.C. Song, G.X. Zhu, H.C. Song, and W. Yi, Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: From potent activators to highly efficient inhibitors, Eur. J. Med. Chem. 93 (2015), pp. 255–262. doi:10.1016/j.ejmech.2015.02.013
  • W. Yi, C. Dubois, S. Yahiaoui, R. Haudecoeur, C. Belle, H.C. Song, R. Hardre, M. Reglier, and A. Boumendjel, Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase, Eur. J. Med. Chem. 46 (2011), pp. 4330–4335. doi:10.1016/j.ejmech.2011.07.003
  • Q. Yan, R.H. Cao, W. Yi, Z.Y. Chen, H. Wen, L. Ma, and H.C. Song, Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities, Eur. J. Med. Chem. 44 (2009), pp. 4235–4243. doi:10.1016/j.ejmech.2009.05.023
  • J. Xu, J. Liu, X.Q. Zhu, Y.Y. Yu, and S.W. Cao, Novel inhibitors of tyrosinase produced by the 4-substitution of tct, Food Chem. 221 (2017), pp. 1530–1538. doi:10.1016/j.foodchem.2016.10.140
  • W.L. Xie, H.L. Zhang, J.J. He, J.G. Zhang, Q.Y. Yu, C.X. Luo, and S.R. Li, Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase, Bioorg. Med. Chem. Lett. 27 (2017), pp. 530–532. doi:10.1016/j.bmcl.2016.12.027
  • J.L. Wu, X.S. Hu, and L. Ma, Synthesis and biological evaluation of polyhydroxy benzophenone as mushroom tyrosinase inhibitors, J. Enzym. Inhib. Med. Chem. 26 (2011), pp. 449–452. doi:10.3109/14756366.2010.521745
  • Y. Wang, L.Y. Xu, X. Liu, X.R. He, G. Ren, L.H. Feng, and Z.W. Zhou, Artopithecins A–D, prenylated 2-Arylbenzofurans from the twigs of Artocarpus pithecogallus and their tyrosinase inhibitory activities, Chem. Pharm. Bull. 66 (2018), pp. 1199–1202. doi:10.1248/cpb.c18-00523
  • Y. Wang, M.J. Curtis-Long, B.W. Lee, H.J. Yuk, D.W. Kim, X.F. Tan, and K.H. Park, Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots, Bioorg. Med. Chem. 22 (2014), pp. 1115–1120. doi:10.1016/j.bmc.2013.12.047
  • A. Vontzalidou, G. Zoidis, E. Chaita, M. Makropoulou, N. Aligiannis, G. Lambrinidis, E. Mikros, and A.L. Skaltsounis, Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors, Bioorg. Med. Chem. Lett. 22 (2012), pp. 5523–5526. doi:10.1016/j.bmcl.2012.07.029
  • X. Tan, Y.H. Song, C. Park, K.W. Lee, J.Y. Kim, D.W. Kim, K.D. Kim, K.W. Lee, M.J. Curtis-Long, and K.H. Park, Highly potent tyrosinase inhibitor, neorauflavane from Campylotropis hirtella and inhibitory mechanism with molecular docking, Bioorg. Med. Chem. 24 (2016), pp. 153–159. doi:10.1016/j.bmc.2015.11.040
  • S.C. Song, A. You, Z.Y. Chen, G.X. Zhu, H. Wen, H.C. Song, and W. Yi, Study on the design, synthesis and structure-activity relationships of new thiosemicarbazone compounds as tyrosinase inhibitors, Eur. J. Med. Chem. 139 (2017), pp. 815–825. doi:10.1016/j.ejmech.2017.08.033
  • Z.J. Sheng, S.Y. Ge, X.M. Xu, Y. Zhang, P.P. Wu, K. Zhang, X.T. Xu, C. Li, D.G. Zhao, and X.W. Tang, Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors, MedChemComm 9 (2018), pp. 853–861. doi:10.1039/c8md00099a
  • A. Setyawati, K. Hirabayashi, K. Yamauchi, H. Hattori, T. Mitsunaga, I. Batubara, R. Heryanto, H. Hashimoto, and M. Hotta, Melanogenesis inhibitory activity of components from salam leaf (Syzygium polyanthum) extract, J. Nat. Med. 72 (2018), pp. 474–480. doi:10.1007/s11418-018-1171-4
  • M.D. Santi, M.A. Peralta, M. Puiatti, J.L. Cabrera, and M.G. Ortega, Melanogenic inhibitory effects of triangularin in b16f0 melanoma cells, in vitro and molecular docking studies, Bioorg. Med. Chem. 27 (2019), pp. 3722–3728. doi:10.1016/j.bmc.2019.06.041
  • T. Sabudak, O. Demirkiran, M. Ozturk, and G. Topcu, Phenolic compounds from Trifolium echinatum bieb. and investigation of their tyrosinase inhibitory and antioxidant activities, Phytochemistry 96 (2013), pp. 305–311. doi:10.1016/j.phytochem.2013.08.014
  • J.S. Roh, J.Y. Han, J.H. Kim, and J.K. Hwang, Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius l.) seeds for melanogenesis, Biol. Pharma. Bull. 27 (2004), pp. 1976–1978. doi:10.1248/bpb.27.1976
  • M. Rezaei, H.T. Mohammadi, A. Mahdavi, M. Shourian, and H. Ghafouri, Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors, Int. J. Biol. Macromol. 108 (2018), pp. 205–213. doi:10.1016/j.ijbiomac.2017.11.147
  • M. Rafiq, M. Saleem, M. Hanif, S.K. Kang, S.Y. Seo, and K.H. Lee, Synthesis, structural elucidation and bioevaluation of 4-amino-1,2,4-triazole-3-thione’s schiff base derivatives, Arch. Pharm. Res. 39 (2016), pp. 161–171. doi:10.1007/s12272-015-0688-2
  • S.K. Radhakrishnan, R.G. Shimmon, C. Conn, and A.T. Baker, Evaluation of novel chalcone oximes as inhibitors of tyrosinase and melanin formation in b16 cells, Arch. Pharm. 349 (2016), pp. 20–29. doi:10.1002/ardp.201500298
  • S. Radhakrishnan, R. Shimmon, C. Conn, and A. Baker, Inhibitory kinetics of novel 2,3-dihydro-1h-inden-1-one chalcone-like derivatives on mushroom tyrosinase, Bioorg. Med. Chem. Lett. 25 (2015), pp. 5495–5499. doi:10.1016/j.bmcl.2015.10.071
  • S. Radhakrishnan, R. Shimmon, C. Conn, and A. Baker, Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors, Bioorg. Med. Chem. Lett. 25 (2015), pp. 4085–4091. doi:10.1016/j.bmcl.2015.08.033
  • R. Qamar, A. Saeed, F.A. Larik, Q. Abbas, M. Hassan, H. Raza, and S.Y. Seo, Novel 1,3-oxazine-tetrazole hybrids as mushroom tyrosinase inhibitors and free radical scavengers: Synthesis, kinetic mechanism, and molecular docking studies, Chem. Biol. Drug Des. 93 (2019), pp. 123–131. doi:10.1111/cbdd.13352
  • F. Pintus, M.J. Matos, S. Vilar, G. Hripcsak, C. Varela, E. Uriarte, L. Santana, F. Borges, R. Medda, A. Di Petrillo, B. Era, and A. Fais, New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies, Bioorg. Med. Chem. 25 (2017), pp. 1687–1695. doi:10.1016/j.bmc.2017.01.037
  • P. Paudel, A. Wagle, S.H. Seong, H.J. Park, H.A. Jung, and J.S. Choi, A new tyrosinase inhibitor from the red alga Symphyocladia latiuscula (harvey) yamada (rhodomelaceae), Mar. Drugs. 17 (2019), pp. 14. doi:10.3390/md17050295
  • Z.Z. Pan, H.L. Li, X.J. Yu, Q.X. Zuo, G.X. Zheng, Y. Shi, X. Liu, Y.M. Lin, G. Liang, Q. Wang, and Q.X. Chen, Synthesis and antityrosinase activities of alkyl 3,4-dihydroxybenzoates, J. Agric. Food Chem. 59 (2011), pp. 6645–6649. doi:10.1021/jf200990g
  • S. Okajima, A. Hamamoto, M. Asano, K. Isogawa, H. Ito, S. Kato, Y. Hirata, K. Furuta, and H. Takemori, Azepine derivative t4fat, a new copper chelator, inhibits tyrosinase, Biochem. Biophys. Res. Commun. 509 (2019), pp. 209–215. doi:10.1016/j.bbrc.2018.12.105
  • K. Nihei and I. Kubo, Benzonitriles as tyrosinase inhibitors with hyperbolic inhibition manner, Int. J. Biol. Macromol. 133 (2019), pp. 929–932. doi:10.1016/j.ijbiomac.2019.04.156
  • S. Mutahir, M.A. Khan, I.U. Khan, M. Yar, M. Ashraf, S. Tariq, R.L. Ye, and B.J. Zhou, Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis-biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies, Eur. J. Med. Chem. 134 (2017), pp. 406–414. doi:10.1016/j.ejmech.2017.04.021
  • M.N. Mustafa, A. Saeed, P.A. Channar, F.A. Larik, M. Zain-ul Abideen, G. Shabir, Q. Abbas, M. Hassan, H. Raza, and S.Y. Seo, Synthesis, molecular docking and kinetic studies of novel quinolinyl based acyl thioureas as mushroom tyrosinase inhibitors and free radical scavengers, Bioorg. Chem. 90 (2019), pp. 103063. doi:10.1016/j.bioorg.2019.103063
  • R. Micillo, J. Sires-Campos, J.C. Garcia-Borron, L. Panzella, A. Napolitano, and C. Olivares, Conjugation with dihydrolipoic acid imparts caffeic acid ester potent inhibitory effect on dopa oxidase activity of human tyrosinase, Int. J. Mol. Sci. 19 (2018), pp. 2156. doi:10.3390/ijms19082156
  • H. Matsuda, S. Nakashima, Y. Oda, S. Nakamura, and M. Yoshikawa, Melanogenesis inhibitors from the rhizomes of Alpinia officinarum in b16 melanoma cells, Bioorg. Med. Chem. 17 (2009), pp. 6048–6053. doi:10.1016/j.bmc.2009.06.057
  • Y. Masamoto, Y. Murata, K. Baba, Y. Shimoishi, M. Tada, and K. Takahata, Inhibitory effects of esculetin on melanin biosynthesis, Biol. Pharma. Bull. 27 (2004), pp. 422–425. doi:10.1248/bpb.27.422
  • Y. Masamoto, H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata, Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L., Biosci. Biotechnol. Biochem. 67 (2003), pp. 631–634. doi:10.1271/bbb.67.631
  • M. Mahdavi, A. Ashtari, M. Khoshneviszadeh, S. Ranjbar, A. Dehghani, T. Akbarzadeh, B. Larijani, M. Khoshneviszadeh, and M. Saeedi, Synthesis of new benzimidazole-1,2,3-triazole hybrids as tyrosinase inhibitors, Chem. Biodivers. 15 (2018), pp. e1800120. doi:10.1002/cbdv.201800120
  • P.P. Liu, C. Shu, L.J. Liu, Q.C. Huang, and Y.Q. Peng, Design and synthesis of thiourea derivatives with sulfur-containing heterocyclic scaffolds as potential tyrosinase inhibitors, Bioorg. Med. Chem. 24 (2016), pp. 1866–1871. doi:10.1016/j.bmc.2016.03.013
  • J.B. Liu, F.Y. Wu, L.J. Chen, J.M. Hu, L.Z. Zhao, C.H. Chen, and L.W. Peng, Evaluation of dihydropyrimidin-(2h)-one analogues and rhodanine derivatives as tyrosinase inhibitors, Bioorg. Med. Chem. Lett. 21 (2011), pp. 2376–2379. doi:10.1016/j.bmcl.2011.02.076
  • J.B. Liu, F.Y. Wu, and C.H. Chen, Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents, Bioorg. Med. Chem. Lett. 25 (2015), pp. 5142–5146. doi:10.1016/j.bmcl.2015.10.004
  • J.B. Liu, C.H. Chen, F.Y. Wu, and L.Z. Zhao, Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives, Chem. Biol. Drug Des. 82 (2013), pp. 39–47. doi:10.1111/cbdd.12126
  • J.B. Liu, R.H. Cao, W. Yi, C.M. Ma, Y.Q. Wan, B.H. Zhou, L. Ma, and H.C. Song, A class of potent tyrosinase inhibitors: Alkylidenethiosemicarbazide compounds, Eur. J. Med. Chem. 44 (2009), pp. 1773–1778. doi:10.1016/j.ejmech.2008.04.002
  • J. Liu, W. Yi, Y. Wan, L. Ma, and H. Song, 1-(1-arylethylidene)thiosemicarbazide derivatives: A new class of tyrosinase inhibitors, Bioorg. Med. Chem. 16 (2008), pp. 1096–1102. doi:10.1016/j.bmc.2007.10.102
  • K. Likhitwitayawuid, A. Sornsute, B. Sritularak, and P. Ploypradith, Chemical transformations of oxyresveratrol (trans-2,4,3,5-tetrahydroxystilbene) into a potent tyrosinase inhibitor and a strong cytotoxic agent, Bioorg. Med. Chem. Lett. 16 (2006), pp. 5650–5653. doi:10.1016/j.bmcl.2006.08.018
  • J.L. Liang, U. Javed, S.H. Lee, J.G. Park, and Y. Jahng, Synthesis of 6-deoxymollugins and their inhibitory activities on tyrosinase, Arch. Pharm. Res. 37 (2014), pp. 862–872. doi:10.1007/s12272-013-0240-1
  • J.P. Ley and H.J. Bertram, Hydroxy- or methoxy-substituted benzaldoximes and benzaldehyde-o-alkyloximes as tyrosinase inhibitors, Bioorg. Med. Chem. 9 (2001), pp. 1879–1885. doi:10.1016/s0968-0896(01)00084-0
  • K.H. Lee, M. Koketsu, S.Y. Choi, K.J. Lee, P. Lee, H. Ishihara, and S.Y. Kim, Potent inhibitory effects of n-aryl s-alkylthiocarbamate derivatives on the dopa oxidase activity of mushroom tyrosinase, Chem. Pharm. Bull. 53 (2005), pp. 747–749. doi:10.1248/cpb.53.747
  • F.A. Larik, A. Saeed, P.A. Channar, U. Muqadar, Q. Abbas, M. Hassan, S.Y. Seo, and M. Bolte, Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers, Eur. J. Med. Chem. 141 (2017), pp. 273–281. doi:10.1016/j.ejmech.2017.09.059
  • K.W. Lam, A. Syahida, Z. Ul-Haq, M.B.A. Rahman, and N.H. Lajis, Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors, Bioorg. Med. Chem. Lett. 20 (2010), pp. 3755–3759. doi:10.1016/j.bmcl.2010.04.067
  • S.Y. Kwak, J.K. Yang, H.R. Choi, K.C. Park, Y.B. Kim, and Y.S. Lee, Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant, Bioorg. Med. Chem. Lett. 23 (2013), pp. 1136–1142. doi:10.1016/j.bmcl.2012.10.107
  • Y. Komori, M. Imai, T. Yamauchi, K. Higashiyama, and N. Takahashi, Effect of p-aminophenols on tyrosinase activity, Bioorg. Med. Chem. 22 (2014), pp. 3994–4000. doi:10.1016/j.bmc.2014.05.073
  • K.D. Kim, M.H. Song, E.K. Yum, O.S. Jeon, Y.W. Ju, and M.S. Chang, Melanogenesis inhibition by mono-hydroxycinnamic ester derivatives in b16 melanoma cells, Bull. Korean Chem. Soc. 31 (2010), pp. 181–184. doi:10.5012/bkcs.2010.31.01.181
  • K.D. Kim, M.H. Song, E.K. Yum, O.S. Jeon, Y.W. Ju, and M.S. Chang, 2,4-dihydroxycinnamic esters as skin depigmenting agents, Bull. Korean Chem. Soc. 30 (2009), pp. 1619–1621. doi:10.5012/bkcs.2009.30.7.1619
  • D.W. Kim, H.S. Woo, J.Y. Kim, J.A. Ryuk, K.H. Park, and B.S. Ko, Phenols displaying tyrosinase inhibition from Humulus lupulus, J. Enzym. Inhib. Med. Chem. 31 (2016), pp. 742–747. doi:10.3109/14756366.2015.1063621
  • S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir, and J. Vaya, Chalcones as potent tyrosinase inhibitors: The importance of a 2,4-substituted resorcinol moiety, Bioorg. Med. Chem. 13 (2005), pp. 433–441. doi:10.1016/j.bmc.2004.10.010
  • M.T.H. Khan, M.I. Choudhary, K.M. Khan, M. Rani, and R. Attaur, Structure-activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues, Bioorg. Med. Chem. 13 (2005), pp. 3385–3395. doi:10.1016/j.bmc.2005.03.012
  • K.M. Khan, U.R. Mughal, M.T.H. Khan, U. Zia, S. Perveen, and M.I. Choudhary, Oxazolones: New tyrosinase inhibitors; synthesis and their structure-activity relationships, Bioorg. Med. Chem. 14 (2006), pp. 6027–6033. doi:10.1016/j.bmc.2006.05.014
  • K.M. Khan, G.M. Maharvi, M.T.H. Khan, A.J. Shaikh, S. Perveen, S. Begum, and M.I. Choudhary, Tetraketones: A new class of tyrosinase inhibitors, Bioorg. Med. Chem. 14 (2006), pp. 344–351. doi:10.1016/j.bmc.2005.08.029
  • G. Karakaya, A. Ture, A. Ercan, S. Oncul, and M.D. Aytemir, Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives, Bioorg. Chem. 88 (2019), pp. 102950. doi:10.1016/j.bioorg.2019.102950
  • H. Kamauchi, M. Noji, K. Kinoshita, T. Takanami, and K. Koyama, Coumarins with an unprecedented tetracyclic skeleton and coumarin dimers from chemically engineered extracts of a marine-derived fungus, Tetrahedron. 74 (2018), pp. 2846–2856. doi:10.1016/j.tet.2018.04.033
  • J.A. Jacobsen, J.L. Fullagar, M.T. Miller, and S.M. Cohen, Identifying chelators for metalloprotein inhibitors using a fragment-based approach, J. Med. Chem. 54 (2011), pp. 591–602. doi:10.1021/jm101266s
  • H. Hamidian, R. Tagizadeh, S. Fozooni, V. Abbasalipour, A. Taheri, and M. Namjou, Synthesis of novel azo compounds containing 5(4h)-oxazolone ring as potent tyrosinase inhibitors, Bioorg. Med. Chem. 21 (2013), pp. 2088–2092. doi:10.1016/j.bmc.2013.01.014
  • H. Hamidian and S. Azizi, Synthesis of novel compounds containing morpholine and 5(4h)-oxazolone rings as potent tyrosinase inhibitors, Bioorg. Med. Chem. 23 (2015), pp. 7089–7094. doi:10.1016/j.bmc.2015.09.015
  • Z.T. Gur, F.S. Senol, S. Shekfeh, I.E. Orhan, E. Banoglu, and B. Caliskan, Novel piperazine amides of cinnamic acid derivatives as tyrosinase inhibitors, Lett. Drug. Des. Discov. 16 (2019), pp. 36–44. doi:10.2174/1570180815666180420105652
  • S. Ghafary, S. Ranjbar, B. Larijani, M. Amini, M. Biglar, M. Mahdavi, M. Bakhshaei, M. Khoshneviszadeh, A. Sakhteman, and M. Khoshneviszadeh, Novel morpholine containing cinnamoyl amides as potent tyrosinase inhibitors, Int. J. Biol. Macromol. 135 (2019), pp. 978–985. doi:10.1016/j.ijbiomac.2019.05.201
  • S.S. Gawande, S.C. Warangkar, B.P. Bandgar, and C.N. Khobragade, Synthesis of new heterocyclic hybrids based on pyrazole and thiazolidinone scaffolds as potent inhibitors of tyrosinase, Bioorg. Med. Chem. 21 (2013), pp. 2772–2777. doi:10.1016/j.bmc.2012.12.053
  • A. Garcia-Jimenez, J.A. Teruel-Puche, J. Berna, J.N. Rodriguez-Lopez, J. Tudela, P.A. Garcia-Ruiz, and F. Garcia-Canovas, Characterization of the action of tyrosinase on resorcinols, Bioorg. Med. Chem. 24 (2016), pp. 4434–4443. doi:10.1016/j.bmc.2016.07.048
  • H. Gao, J. Nishida, S. Saito, and J. Kawabata, Inhibitory effects of 5,6,7-trihydroxyflavones on tyrosinase, Molecules 12 (2007), pp. 86–97. doi:10.3390/12010086
  • K.A. Ford, A.G. Gulevich, T.L. Swenson, and J.E. Casida, Neonicotinoid insecticides: Oxidative stress in planta and metallo-oxidase inhibition, J. Agric. Food Chem. 59 (2011), pp. 4860–4867. doi:10.1021/jf200485k
  • S. Ferro, B. Deri, M.P. Germano, R. Gitto, L. Ielo, M.R. Buemi, G. Certo, S. Vittorio, A. Rapisarda, Y. Pazy, A. Fishman, and L. De Luca, Targeting tyrosinase: Development and structural insights of novel inhibitors bearing arylpiperidine and arylpiperazine fragments, J. Med. Chem. 61 (2018), pp. 3908–3917. doi:10.1021/acs.jmedchem.7b01745
  • S. Ferro, G. Certo, L. De Luca, M.P. Germano, A. Rapisarda, and R. Gitto, Searching for indole derivatives as potential mushroom tyrosinase inhibitors, J. Enzym. Inhib. Med. Chem. 31 (2016), pp. 398–403. doi:10.3109/14756366.2015.1029470
  • Y.T. Fang, Y.Z. Chen, G.F. Feng, and L. Ma, Benzyl benzoates: New phlorizin analogs as mushroom tyrosinase inhibitors, Bioorg. Med. Chem. 19 (2011), pp. 1167–1171. doi:10.1016/j.bmc.2010.12.051
  • Q. Fan, H. Jiang, E.D. Yuan, J.X. Zhang, Z.X. Ning, S.J. Qi, and Q.Y. Wei, Tyrosinase inhibitory effects and antioxidative activities of novel cinnamoyl amides with amino acid ester moiety, Food Chem. 134 (2012), pp. 1081–1087. doi:10.1016/j.foodchem.2012.03.021
  • J.J. Faig, A. Moretti, L.B. Joseph, Y.Y. Zhang, M.J. Nova, K. Smith, and K.E. Uhrich, Biodegradable kojic acid-based polymers: Controlled delivery of bioactives for melanogenesis inhibition, Biomacromolecules 18 (2017), pp. 363–373. doi:10.1021/acs.biomac.6b01353
  • Z.Y. Du, Y.F. Jiang, Z.K. Tang, R.Q. Mo, G.H. Xue, Y.J. Lu, X. Zheng, C.Z. Dong, and K. Zhang, Antioxidation and tyrosinase inhibition of polyphenolic curcumin analogs, Biosci. Biotechnol. Biochem. 75 (2011), pp. 2351–2358. doi:10.1271/bbb.110547
  • G. Delogu, G. Podda, M. Corda, M.B. Fadda, A. Fais, and B. Era, Synthesis and biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase inhibitors, Bioorg. Med. Chem. Lett. 20 (2010), pp. 6138–6140. doi:10.1016/j.bmcl.2010.08.018
  • Z. Dehghani, M. Khoshneviszadeh, M. Khoshneviszadeh, and S. Ranjbar, Veratric acid derivatives containing benzylidene-hydrazine moieties as promising tyrosinase inhibitors and free radical scavengers, Bioorg. Med. Chem. 27 (2019), pp. 2644–2651. doi:10.1016/j.bmc.2019.04.016
  • Y. Cui, Y.H. Hu, F. Yu, J. Zheng, L.S. Chen, Q.X. Chen, and Q. Wang, Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase, Int. J. Biol. Macromol. 95 (2017), pp. 1289–1297. doi:10.1016/j.ijbiomac.2016.11.027
  • M.I. Crespo, M.F. Chaban, P.A. Lanza, M.B. Joray, S.M. Palacios, D.M.A. Vera, and M.C. Carpinella, Inhibitory effects of compounds isolated from Lepechinia meyenii on tyrosinase, Food Chem. Toxicol. 125 (2019), pp. 383–391. doi:10.1016/j.fct.2019.01.019
  • S.Y. Choi, S. Kim, H. Kim, K. Suk, J.S. Hwang, B.G. Lee, A.J. Kim, and S.Y. Kim, (4-methoxy-benzylidene)-(3-methoxy-phenyl)-amine, a nitrogen analog of stilbene as a potent inhibitor of melanin production, Chem. Pharm. Bull. 50 (2002), pp. 450–452. doi:10.1248/cpb.50.450
  • S.J. Cho, J.S. Roh, W.S. Sun, S.H. Kim, and K.D. Park, N-benzylbenzamides: A new class of potent tyrosinase inhibitors, Bioorg. Med. Chem. Lett. 16 (2006), pp. 2682–2684. doi:10.1016/j.bmcl.2006.02.018
  • J.C. Cho, H.S. Rho, Y.H. Joo, C.S. Lee, J. Lee, S.M. Ahn, J.E. Kim, S.S. Shin, Y.H. Park, K.D. Suh, and S.N. Park, Depigmenting activities of kojic acid derivatives without tyrosinase inhibitory activities, Bioorg. Med. Chem. Lett. 22 (2012), pp. 4159–4162. doi:10.1016/j.bmcl.2012.04.046
  • M.E. Chiari, D.M.A. Vera, S.M. Palacios, and M.C. Carpinella, Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from dalea elegans, Bioorg. Med. Chem. 19 (2011), pp. 3474–3482. doi:10.1016/j.bmc.2011.04.025
  • Z.Y. Chen, D.C. Cai, D.H. Mou, Q. Yan, Y.F. Sun, W.L. Pan, Y.Q. Wan, H.C. Song, and W. Yi, Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted 5-benzylidene (thio) barbiturates as novel tyrosinase inhibitors, Bioorg. Med. Chem. 22 (2014), pp. 3279–3284. doi:10.1016/j.bmc.2014.04.060
  • Q.X. Chen and I. Kubo, Kinetics of mushroom tyrosinase inhibition by quercetin, J. Agric. Food Chem. 50 (2002), pp. 4108–4112. doi:10.1021/jf011378z
  • L.H. Chen, Y.H. Hu, W. Song, K.K. Song, X. Liu, Y.L. Jia, J.X. Zhuang, and Q.X. Chen, Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: Novel tyrosinase inhibitors, J. Agric. Food Chem. 60 (2012), pp. 1542–1547. doi:10.1021/jf204420x
  • P.A. Channar, A. Saeed, F.A. Larik, M. Rafiq, Z. Ashraf, F. Jabeen, and T.A. Fattah, Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl 2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo- thiazolidin-5-ylidene acetates as mushroom tyrosinase inhibitors, Bioorg. Med. Chem. 25 (2017), pp. 5929–5938. doi:10.1016/j.bmc.2017.09.009
  • P.A. Channar, A. Saeed, F.A. Larik, B. Batool, S. Kalsoom, M.M. Hasan, M.F. Erben, H.R. El-Seedi, M. Ali, and Z. Ashraf, Synthesis of aryl pyrazole via suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with kojic acid, Bioorg. Chem. 79 (2018), pp. 293–300. doi:10.1016/j.bioorg.2018.04.026.
  • G.M. Casanola-Martin, Y. Marrero-Ponce, M.T.H. Khan, A. Ather, K.M. Khan, F. Torrens, and R. Rotondo, Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays, Eur. J. Med. Chem. 42 (2007), pp. 1370–1381. doi:10.1016/j.ejmech.2007.01.026.
  • A.R.S. Butt, M.A. Abbasi, R. Azizur, S.Z. Siddiqui, H. Raza, M. Hassan, S.A.A. Shah, M. Shahid, and S.Y. Seo, Synthesis and structure-activity relationship of tyrosinase inhibiting novel bi-heterocyclic acetamides: Mechanistic insights through enzyme inhibition, kinetics and computational studies, Bioorg. Chem. 86 (2019), pp. 459–472. doi:10.1016/j.bioorg.2019.01.036
  • S.N.A. Bukhari, I. Jantan, O.U. Tan, M. Sher, M. Naeem-ul-Hassan, and H.L. Qin, Biological activity and molecular docking studies of curcumin-related alpha,beta-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors, J. Agric. Food Chem. 62 (2014), pp. 5538–5547. doi:10.1021/jf501145b.
  • B.P. Bandgar, J.V. Totre, S.S. Gawande, C.N. Khobragade, S.C. Warangkar, and P.D. Kadam, Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents, Bioorg. Med. Chem. 18 (2010), pp. 6149–6155. doi:10.1016/j.bmc.2010.06.046.
  • B.P. Bandgar, L.K. Adsul, H.V. Chavan, S.N. Shringare, B.L. Korbad, S.S. Jalde, S.V. Lonikar, S.H. Nile, and A.L. Shirfule, Synthesis, biological evaluation, and molecular docking of n-{3-3-(9-methyl-9h-carbazol-3-yl)-acryloyl -phenyl}-benzamide/amide derivatives as xanthine oxidase and tyrosinase inhibitors, Bioorg. Med. Chem. 20 (2012), pp. 5649–5657. doi:10.1016/j.bmc.2012.07.001.
  • Y.S. Baek, Y.B. Ryu, M.J. Curtis-Long, T.J. Ha, R. Rengasamy, M.S. Yang, and K.H. Park, Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki, Bioorg. Med. Chem. 17 (2009), pp. 35–41. doi:10.1016/j.bmc.2008.11.022.
  • Z. Ashraf, M. Rafiq, S.Y. Seo, K.S. Kwon, M.M. Babar, and N. Zaidi, Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase, Eur. J. Med. Chem. 98 (2015), pp. 203–211. doi:10.1016/j.ejmech.2015.05.031.
  • Z. Ashraf, M. Rafiq, S.Y. Seo, M.M. Babar, and N. Zaidi, Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase, Bioorg. Med. Chem. 23 (2015), pp. 5870–5880. doi:10.1016/j.bmc.2015.06.068.
  • Z. Ashraf, M. Rafiq, H. Nadeem, M. Hassan, S. Afzal, M. Waseem, K. Afzal, and J. Latip, Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies, PLoS One 12 (2017), pp. e0178069. doi:10.1371/journal.pone.0178069.
  • M. Ashooriha, M. Khoshneviszadeh, M. Khoshneviszadeh, S.E. Moradi, A. Rafiei, M. Kardan, and S. Emami, 1,2,3-triazole-based kojic acid analogs as potent tyrosinase inhibitors: Design, synthesis and biological evaluation, Bioorg. Chem. 82 (2019), pp. 414–422. doi:10.1016/j.bioorg.2018.10.069.
  • E.T. Arung, K. Shimizu, H. Tanaka, and R. Kondo, Melanin biosynthesis inhibitors from wood of Artocarpus heterophyllus: The effect of isoprenoid substituent of flavone with 4-substituted resorcinol moiety at b ring, Lett. Drug Des. Discov. 7 (2010), pp. 602–605. doi:10.2174/157018010792062777.
  • E.T. Arung, K. Shimizu, H. Tanaka, and R. Kondo, 3-prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus, Fitoterapia 81 (2010), pp. 640–643. doi:10.1016/j.fitote.2010.03.011.
  • E.T. Arung, K. Shimizu, and R. Kondo, Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis, Biol. Pharm. Bull. 29 (2006), pp. 1966–1969. doi:10.1248/bpb.29.1966.
  • V.U. Ahmad, F. Ullah, J. Hussain, U. Farooq, M. Zubair, M.T.H. Khan, and M.I. Choudhary, Tyrosinase inhibitors from Rhododendron collettianum and their structure-activity relationship (SAR) studies, Chem. Pharm. Bull. 52 (2004), pp. 1458–1461. doi:10.1248/cpb.52.1458.
  • S.A. Abdullah, S. Jamil, N. Basar, S.M.A. Lathiff, and N.M. Arriffin, Flavonoids from the leaves and heartwoods of Artocarpus lowii king and their bioactivities, Nat. Prod. Res. 31 (2017), pp. 1113–1120. doi:10.1080/14786419.2016.1222387.
  • Q. Abbas, H. Raza, M. Hassan, A.R. Phull, S.J. Kim, and S.Y. Seo, Acetazolamide inhibits the level of tyrosinase and melanin: An enzyme kinetic, in vitro, in vivo, and in silico studies, Chem. Biodivers. 14 (2017), pp. e1700117. doi:10.1002/cbdv.201700117.
  • Q. Abbas, Z. Ashraf, M. Hassan, H. Nadeem, M. Latif, S. Afzal, and S.Y. Seo, Development of highly potent melanogenesis inhibitor by in vitro, in vivo and computational studies, Drug. Des. Dev. Ther. 11 (2017), pp. 2029–2046. doi:10.2147/dddt.S137550
  • R.R.J. Arroo, S. Sari, B. Barut, A. Ozel, K.C. Ruparelia, and D. Sohretoglu, Flavones as tyrosinase inhibitors: Kinetic studies in vitro and in silico, Phytochem. Anal. 31 (2020), pp. 314–321. doi:10.1002/pca.2897.
  • M. Ashooriha, M. Khoshneviszadeh, M. Khoshneviszadeh, A. Rafiei, M. Kardan, R. Yazdian-Robati, and S. Emami, Kojic acid-natural product conjugates as mushroom tyrosinase inhibitors, Eur. J. Med. Chem. 201 (2020), pp. 112480. doi:10.1016/j.ejmech.2020.112480.
  • L. De Luca, M.P. Germano, A. Fais, F. Pintus, M.R. Buemi, S. Vittorio, S. Mirabile, A. Rapisarda, and R. Gitto, Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety, Bioorg. Med. Chem. 28 (2020), pp. 115497. doi:10.1016/j.bmc.2020.115497.
  • K. Haldys, W. Goldeman, M. Jewginski, E. Wolinska, N. Anger-Gora, J. Rossowska, and R. Latajka, Halogenated aromatic thiosemicarbazones as potent inhibitors of tyrosinase and melanogenesis, Bioorg. Chem. 94 (2020), pp. 103419. doi:10.1016/j.bioorg.2019.103419.
  • A. Iraji, T. Adelpour, N. Edraki, M. Khoshneviszadeh, R. Miri, and M. Khoshneviszadeh, Synthesis, biological evaluation and molecular docking analysis of vaniline-benzylidenehydrazine hybrids as potent tyrosinase inhibitors, BMC. Chem. 14 (2020), pp. 1–11. doi:10.1186/s13065-020-00679-1.
  • S. Karimian, S. Ranjbar, M. Dadfar, M. Khoshneviszadeh, M. Gholampour, A. Sakhteman, and M. Khoshneviszadeh, 4h-benzochromene derivatives as novel tyrosinase inhibitors and radical scavengers: Synthesis, biological evaluation, and molecular docking analysis, Mol. Divers. (2020). doi:10.1007/s11030-020-10123-0.
  • J.H. Kim, D.H. Jang, K.W. Lee, K.D. Kim, A.B. Shah, K. Zhumanova, and K.H. Park, Tyrosinase inhibition and kinetic details of puerol a having but-2-enolide structure from Amorpha fruticosa, Molecules 25 (2020), pp. e2344. doi:10.3390/molecules25102344.
  • T.H. Le, T.N.V. Do, H.X. Nguyen, P.H. Dang, N.T. Nguyen, and M.T.T. Nguyen, A new phenylheptanoid from the leaves of Gnetum gnemon l, Nat. Prod. Res. (2020), pp. 1–6. doi:10.1080/14786419.2020.1753055.
  • Y. Nazir, A. Saeed, M. Rafiq, S. Afzal, A. Ali, M. Latif, J. Zuegg, W.M. Hussein, C. Fercher, R.T. Barnard, M.A. Cooper, M.A.T. Blaskovich, Z. Ashraf, and Z.M. Ziora, Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies, Bioorg. Med. Chem. Lett. 30 (2020), pp. 126722. doi:10.1016/j.bmcl.2019.126722.
  • L.R. Singh, Y.L. Chen, Y.Y. Xie, W. Xia, X.W. Gong, R.C. Hider, and T. Zhou, Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity, J. Enzym. Inhib. Med. Chem. 35 (2020), pp. 1562–1567. doi:10.1080/14756366.2020.1801669.
  • S.C. Song, Y.L. Mai, H.H. Shi, B. Liao, and F. Wang, Design, synthesis, biological evaluation and inhibition mechanism of 3-/4-alkoxy phenylethylidenethiosemicarbazides as new, potent and safe tyrosinase inhibitors, Chem. Pharm. Bull. 68 (2020), pp. 369–379. doi:10.1248/cpb.c19-00949.
  • X. Song, X. Hu, Y. Zhang, J.H. Pan, D.M. Gong, and G.W. Zhang, Inhibitory mechanism of epicatechin gallate on tyrosinase: Inhibitory interaction, conformational change and computational simulation, Food Funct. 11 (2020), pp. 4892–4902. doi:10.1039/d0fo00003e.
  • B.D. Vanjare, P.G. Mahajan, N.C. Dige, H. Raza, M. Hassan, Y. Han, S.J. Kim, S.Y. Seo, and K.H. Lee, Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: Synthesis, kinetic mechanism, cytotoxicity and computational studies, Mol. Divers. (2020). doi:10.1007/s11030-020-10102-5.
  • Y.J. Zhai, G.M. Huo, Q. Zhang, D. Li, D.C. Wang, J.Z. Qi, W.B. Han, and J.M. Gao, Phaeosphaones: Tyrosinase inhibitory thiodiketopiperazines from an endophytic Phaeosphaeria fuckelii, J. Nat. Prod. 83 (2020), pp. 1592–1597. doi:10.1021/acs.jnatprod.0c00046.
  • Y. Zhang, X. Fu, Y.T. Yan, and J.B. Liu, Microwave-assisted synthesis and biological evaluation of new thiazolylhydrazone derivatives as tyrosinase inhibitors and antioxidants, J. Heterocycl. Chem. 57 (2020), pp. 991–1002. doi:10.1002/jhet.3760.
  • R. Ujan, A. Saeed, S. Ashraf, P.A. Channar, Q. Abbas, M.A. Rind, M. Hassan, H. Raza, S.Y. Seo, and H.R. El-Seedi, Synthesis, computational studies and enzyme inhibitory kinetics of benzothiazole-linked thioureas as mushroom tyrosinase inhibitors, J. Biomol. Struct. Dyn. (2020), pp. 1–9. doi:10.1080/07391102.2020.1804459.
  • H. Raza, M.A. Abbasi, R. Azizur, S.Z. Siddiqui, M. Hassan, S.A.A. Shah, M. Shahid, H. Hong, and S.Y. Seo, Design, synthesis and computational studies of n-(substituted-phenyl)-4-(4-phenyl-1-piperazinyl)butanamides as potent anti-melanogenic and tyrosinase inhibitors, J. Mol. Struct. 1210 (2020), pp. 127969. doi:10.1016/j.molstruc.2020.127969.
  • L. Dinparast, S. Hemmati, A.A. Alizadeh, G. Zengin, H.S. Kafil, M.B. Bahadori, and S. Dastmalchi, An efficient, catalyst-free, one-pot synthesis of 4h-chromene derivatives and investigating their biological activities and mode of interactions using molecular docking studies, J. Mol. Struct. 1203 (2020), pp. 127426. doi:10.1016/j.molstruc.2019.127426.
  • G. Casedas, F. Les, C. Choya-Foces, M. Hugo, and V. Lopez, The metabolite urolithin-A ameliorates oxidative stress in Neuro-2a cells, becoming a potential neuroprotective agent, Antioxidants-Basel 9 (2020), pp. 177. doi:10.3390/antiox9020177.
  • H. Raza, M.A. Abbasi, R. Azizur, S.Z. Siddiqui, M. Hassan, Q. Abbas, H. Hong, S.A.A. Shah, M. Shahid, and S.Y. Seo, Synthesis, molecular docking, dynamic simulations, kinetic mechanism, cytotoxicity evaluation of n-(substituted-phenyl)-4-{(4- (e)-3-phenyl-2-propenyl −1-piperazinyl} butanamides as tyrosinase and melanin inhibitors: In vitro, in vivo and in silico approaches, Bioorg. Chem. 94 (2020), pp. 103445. doi:10.1016/j.bioorg.2019.103445.
  • J. Xia, S. Li, Y. Ding, S. Wu, and X.S.M. Wang, Mubd-decoymaker 2.0: A Python GUI application to generate maximal unbiased benchmarking data sets for virtual drug screening, Mol. Inf. 39 (2020), pp. e1900151. doi:10.1002/minf.201900151.
  • G.A. Landrum, RDKit 2019.03.4: An open-source cheminformatics software, San Francisco, CA, 2019. accessed October 2020. available at http://www.rdkit.org
  • S. Riniker and G.A. Landrum, Open-source platform to benchmark fingerprints for ligand-based virtual screening, J. Cheminform. 5 (2013), pp. 1–17. doi:10.1186/1758-2946-5-26.
  • D. Rogers and M. Hahn, Extended-connectivity fingerprints, J. Chem Inf. Model. 50 (2010), pp. 742–754. doi:10.1021/ci100050t.
  • P. Gedeck, B. Rohde, and C. Bartels, QSAR − how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets, J. Chem Inf. Model. 46 (2006), pp. 1924–1936. doi:10.1021/ci050413p.
  • M. Sud, Mayachemtools: An open source package for computational drug discovery, J. Chem. Inf. Model 56 (2016), pp. 2292–2297. doi:10.1021/acs.jcim.6b00505.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), pp. 2825–2830.
  • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn. 46 (2002), pp. 389–422. doi:10.1023/A:1012487302797
  • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995), pp. 273–297. doi:10.1023/A:1022627411411
  • W.Y. Loh, Classification and regression trees, Wires. Data Min. Knowl. 1 (2011), pp. 14–23. doi:10.1002/widm.8
  • L. Breiman, Random forests, Mach. Learn. 45 (2001), pp. 5–32. doi:10.1023/a:1010933404324.
  • H.F. Yu, F.L. Huang, and C.J. Lin, Dual coordinate descent methods for logistic regression and maximum entropy models, Mach. Learn. 85 (2011), pp. 41–75. doi:10.1007/s10994-010-5221-8.
  • Y.T. Xu, J.S. Ma, A. Liaw, R.P. Sheridan, and V. Svetnik, Demystifying multitask deep neural networks for quantitative structure-activity relationships, J. Chem Inf. Model. 57 (2017), pp. 2490–2504. doi:10.1021/acs.jcim.7b00087.
  • Keras 2.2.4: A python deep learning api. Available at https://keras.io (accessed Oct, 2020).
  • Tensorflow 1.14. accessed October 2020. available at https://tensorflow.google.cn
  • M. Mete, U. Sakoglu, J.S. Spence, M.D. Devous, T.S. Harris, and B. Adinoff, Successful classification of cocaine dependence using brain imaging: A generalizable machine learning approach, BMC Bioinform. 17 (2016), pp. 357. doi:10.1186/s12859-016-1218-z.
  • L. Prechelt, Automatic early stopping using cross validation: Quantifying the criteria, Neural Netw. 11 (1998), pp. 761–767. doi:10.1016/S0893-6080(98)00010-0.
  • K.J. Preacher, P.J. Curran, and D.J. Bauer, Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis, J. Educ. Behav. Stat. 31 (2006), pp. 437–448. doi:10.3102/10769986031004437
  • D. Krstajic, L.J. Buturovic, D.E. Leahy, and S. Thomas, Cross-validation pitfalls when selecting and assessing regression and classification models, J. Cheminf. 6 (2014), pp. 15. doi:10.1186/1758-2946-6-10.
  • I. Sushko, S. Novotarskyi, R. Korner, A.K. Pandey, A. Cherkasov, J.Z. Lo, P. Gramatica, K. Hansen, T. Schroeter, K.R. Muller, L.L. Xi, H.X. Liu, X.J. Yao, T. Oberg, F. Hormozdiari, P.H. Dao, C. Sahinalp, R. Todeschini, P. Polishchuk, A. Artemenko, V. Kuz’min, T.M. Martin, D.M. Young, D. Fourches, E. Muratov, A. Tropsha, I. Baskin, D. Horvath, G. Marcou, C. Muller, A. Varnek, V.V. Prokopenko, and I.V. Tetko, Applicability domains for classification problems: Benchmarking of distance to models for ames mutagenicity set, J. Chem. Inf. Model 50 (2010), pp. 2094–2111. doi:10.1021/ci100253r.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR. Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • E.R. DeLong, D.M. DeLong, and D.L. Clarke-Pearson, Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach, Biometrics 44 (1988), pp. 837–845. doi:10.2307/2531595.
  • A. Nicholls, Confidence limits, error bars and method comparison in molecular modeling. Part 2: Comparing methods, J. Comput. Aided Molec. Des. 30 (2016), pp. 103–126. doi:10.1007/s10822-016-9904-5.
  • Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. B. 57 (1995), pp. 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
  • L. van der Maaten and G. Hinton, Visualizing data using t-sne, J. Mach. Learn. Res. 9 (2008), pp. 2579–2605. Available at https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
  • T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu, An efficient k-means clustering algorithm: Analysis and implementation, IEEE T. Pattern. Anal. 24 (2002), pp. 881–892. doi:10.1109/tpami.2002.1017616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.