109
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Computational identification of chemical compounds with potential anti-Chagas activity using a classification tree

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 71-83 | Received 08 Oct 2020, Accepted 10 Dec 2020, Published online: 18 Jan 2021

References

  • N. Feasey, M. Wansbrough-Jones, D.C.W. Mabey, and A.W. Solomon, Neglected tropical diseases, Br. Med. Bull. 93 (2010), pp. 179–200. doi:10.1093/bmb/ldp046.
  • J.P. Cohen, G. Sturgeon, and A. Cohen, Measuring progress in neglected disease drug development, Clin. Ther. 36 (2014), pp. 1037–1042. doi:10.1016/j.clinthera.2014.05.004.
  • C.B. Scarim, D.H. Jornada, R.C. Chelucci, L. de Almeida, J.L. Dos Santos, and M.C. Chung, Current advances in drug discovery for Chagas disease, Eur. J. Med. Chem. 155 (2018), pp. 824–838. doi:10.1016/j.ejmech.2018.06.040.
  • D.A. Álvarez-Hernández, G.A. Franyuti-Kelly, R. Díaz-López-Silva, A.M. González-Chávez, D. González-Hermosillo-Cornejo, and R. Vázquez-López, Chagas disease: Current perspectives on a forgotten disease, Rev. Med. Hosp. Gen. (Mex) 81 (2018), pp. 154–164. doi:10.1016/j.hgmx.2016.09.010.
  • WHO, Chagas disease in latin america: An epidemiological update based on 2010 estimates, Wkly. Epidemiol. Rec. [ Internet] 90 (2015), pp. 33–43.
  • Q. Liu and X.-N. Zhou, Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries, Infect. Dis. Poverty 4 (2015), pp. 60. doi:10.1186/s40249-015-0092-7.
  • WHO, Chagas Disease - Epidemiology, Geneva, Switzerland: World and Health Organization, 2018.
  • A. Prata, Clinical and epidemiological aspects of Chagas disease, Lancet Infect. Dis. 1 (2001), pp. 92–100. doi:10.1016/S1473-3099(01)00065-2.
  • J.A. Castillo-Garit, O. Del Toro-Cortés, M.C. Vega, M. Rolón, A. Rojas de Arias, G.M. Casañola-Martin, J.A. Escario, A. Gómez-Barrio, Y. Marrero-Ponce, F. Torrens, and C. Abad, Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening, Eur. J. Med. Chem. 96 (2015), pp. 238–244. doi:10.1016/j.ejmech.2015.03.063.
  • J. Gascon, C. Bern, and M.-J. Pinazo, Chagas disease in Spain, the United States and other non-endemic countries, Acta Tropica 115 (2010), pp. 22–27. doi:10.1016/j.actatropica.2009.07.019.
  • J. Prieto, A. Talevi, and L. Bruno-Blanch, Application of linear discriminant analysis in the virtual screening of antichagasic drugs through trypanothione reductase inhibition, Mol. Div. 10 (2006), pp. 361–375. doi:10.1007/s11030-006-9044-2.
  • J.A. Urbina, Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches, Acta Tropica 115 (2010), pp. 55–68. doi:10.1016/j.actatropica.2009.10.023.
  • J.C.P. Dias, The treatment of Chagas disease (South American Trypanosomiasis), Ann. Int. Med. 144 (2006), pp. 772–774. doi:10.7326/0003-4819-144-10-200605160-00012.
  • P. Pan, A.B. Vermelho, G. Capaci Rodrigues, A. Scozzafava, M.E.E. Tolvanen, S. Parkkila, C. Capasso, and C.T. Supuran, Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease, J. Med. Chem. 56 (2013), pp. 1761–1771. doi:10.1021/jm4000616.
  • C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, F. Rosas, E. Villena, R. Quiroz, R. Bonilla, C. Britto, F. Guhl, E. Velazquez, L. Bonilla, B. Meeks, P. Rao-Melacini, J. Pogue, A. Mattos, J. Lazdins, A. Rassi, S.J. Connolly, and S. Yusuf, Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy, N. Engl. J. Med. 373 (2015), pp. 1295–1306. doi:10.1056/NEJMoa1507574.
  • J.A. Urbina and R. Docampo, Specific chemotherapy of Chagas disease: Controversies and advances, Trends Parasitol. 19 (2003), pp. 495–501. doi:10.1016/j.pt.2003.09.001.
  • S.G. Andrade, A. Rassi, J.B. Magalhaes, F.F. Filho, and A.O. Luquetti, Specific chemotherapy of Chagas disease: A comparison between the response in patients and experimental animals inoculated with the same strains, Trans. R. Soc. Tropical Med. Hygiene 86 (1992), pp. 624–626. doi:10.1016/0035-9203(92)90156-7.
  • J.A. Urbina, Chemotherapy of Chagas disease, Curr. Pharm. Design 8 (2002), pp. 287–295. doi:10.2174/1381612023396177.
  • J.A. Castillo-Garit, O. Del Toro-Cortés, V.V. Kouznetsov, C.O. Puentes, A.R. Romero Bohórquez, M.C. Vega, M. Rolón, J.A. Escario, A. Gómez-Barrio, Y. Marrero-Ponce, F. Torrens, and C. Abad, Identification in silico and in vitro of novel trypanosomicidal drug-like compounds, Chem. Biol. Drug Des. 80 (2012), pp. 38–45. doi:10.1111/j.1747-0285.2012.01378.x.
  • E. Chatelain, Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J. 15 (2017), pp. 98–103. doi:10.1016/j.csbj.2016.12.002.
  • A.S. Planche, M.T. Scotti, V.D.P. Emerenciano, A.G. López, E.M. Pérez, and E. Uriarte, Designing novel antitrypanosomal agents from a mixed graph-theoretical substructural approach, J. Comput. Chem. 31 (2010), pp. 882–894. doi:10.1002/jcc.21374.
  • G. Álvarez, J. Varela, E. Cruces, M. Fernández, M. Gabay, S.M. Leal, P. Escobar, L. Sanabria, E. Serna, S. Torres, S.J. Figueredo Thiel, G. Yaluff, N.I. Vera de Bilbao, H. Cerecetto, and M. González, Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease, Antimicrob. Agents Chemother. 59 (2015), pp. 1398–1404. doi:10.1128/AAC.03814-14.
  • M. Keenan, P.W. Alexander, J.H. Chaplin, M.J. Abbott, H. Diao, Z. Wang, W.M. Best, C.J. Perez, S.M.J. Cornwall, S.K. Keatley, R.C.A. Thompson, S.A. Charman, K.L. White, E. Ryan, G. Chen, J.-R. Ioset, T.W. von Geldern, and E. Chatelain, Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi, Future Med. Chem. 5 (2013), pp. 1733–1752. doi:10.4155/fmc.13.139.
  • J.A. Castillo-Garit, N. Flores-Balmaseda, O. Álvarez, H. Pham-The, V. Pérez-Doñate, F. Torrens, and F. Pérez-Giménez, Computational identification of chemical compounds with potential activity against Leishmania amazonensis using nonlinear machine learning techniques, Curr. Top. Med. Chem. 18 (2018), pp. 2347–2354. doi:10.2174/1568026619666181130121558.
  • S.J. Barigye, M.P. Freitas, P. Ausina, P. Zancan, M. Sola-Penna, and J.A. Castillo-Garit, Discrete Fourier transform-based multivariate image analysis: Application to modeling of aromatase inhibitory activity, ACS Comb. Sci. 20 (2018), pp. 75–81. doi:10.1021/acscombsci.7b00155.
  • J.A. Castillo-Garit, C. Abad, G.M. Casañola-Martin, S.J. Barigye, F. Torrens, and A. Torreblanca, Prediction of aquatic toxicity of benzene derivatives to Tetrahymena pyriformis according to OECD principles, Curr. Pharm. Des. 22 (2016), pp. 5085–5094.
  • G.M. Casanola-Martin, H. Le-Thi-Thu, Y. Marrero-Ponce, J.A. Castillo-Garit, F. Torrens, F. Perez-Gimenez, and C. Abad, Analysis of proteasome inhibition prediction using atom-based quadratic indices enhanced by machine learning classification techniques, Lett. Drug Des. Discovery 11 (2014), pp. 705–711. doi:10.2174/1570180811666140122001144.
  • H. Le-Thi-Thu, Y. Canizares-Carmenate, Y. Marrero-Ponce, F. Torrens, and J.A. Castillo-Garit, Prediction of Caco-2 cell permeability using bilinear indices and multiple linear regression, Lett. Drug Des. Discov. 13 (2016), pp. 161–169. doi:10.2174/1570180812666150630183511.
  • J.A. Castillo-Garit, G.M. Casañola-Martin, S.J. Barigye, H. Pham-The, F. Torrens, and A. Torreblanca, Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis, SAR QSAR Environ. Res. 28 (2017), pp. 735–747. doi:10.1080/1062936X.2017.1376705.
  • STATISTICA (data analysis software system) version 6, StatSoft, Inc, Tulsa. Available at www.statsoft.com.
  • Kode srl, Dragon (software for molecular descriptor calculation) version 7.0.10. Available at https://chm.kode-solutions.net.
  • R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993.
  • L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and Regression Trees, Wadsworth, Monterey, CA, 1984.
  • I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed., Morgan Kaufmann Series in Data Management Systems, San Francisco, CA: Morgan Kaufmann Publishers, 2005.
  • P. Baldi, S. Brunak, Y. Chauvin, C.A. Andersen, and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: An overview, Bioinformatics 16 (2000), pp. 412–424. doi:10.1093/bioinformatics/16.5.412.
  • N. Nikolova-Jeliazkova, AMBIT: Building blocks for a future (Q)SAR decision support system. Available at http://ambit.acad.bg.
  • J.A. Castillo-Garit, G.M. Casañola-Martin, H. Le-Thi-Thu, H. Pham-The, and S.J. Barigye, A simple method to predict blood-brain barrier permeability of drug- like compounds using classification trees, Med. Chem. 13 (2017), pp. 664–669. doi:10.2174/1573406413666170209124302.
  • F. Harary, Graph Theory, New-York: Addison-Wesley Pub. Co., 1969.
  • M. Randić, Random walks and their diagnostic value for characterization of atomic environment, J. Comput. Chem. 1 (1980), pp. 386–399. doi:10.1002/jcc.540010410.
  • H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Öberg, P. Dao, A. Cherkasov, and I.V. Tetko, Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis, J. Chem. Inf. Model. 48 (2008), pp. 766–784. doi:10.1021/ci700443v.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010. doi:10.1021/jm4004285.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, S.J. Barigye, R. Medina-Marrero, M.G. Bernal, J.M.G.D.L. Vega, F. Torrens, V.J. Arán, F. Pérez-Giménez, R. García-Domenech, and R. Acevedo-Barrios, In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach, J. Braz. Chem. Soc. 26 (2015), pp. 1218–1226. doi:10.5935/0103-5053.20150087.
  • R. Martín-Escolano, D. Molina-Carreño, E. Delgado-Pinar, Á. Martin-Montes, M.P. Clares, E. Medina-Carmona, J. Pitarch-Jarque, J. Martín-Escolano, M.J. Rosales, E. García-España, M. Sánchez-Moreno, and C. Marín, New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases, Eur. J. Med. Chem. 164 (2019), pp. 27–46. doi:10.1016/j.ejmech.2018.12.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.