332
Views
5
CrossRef citations to date
0
Altmetric
Research Article

In silico guided design of non-covalent inhibitors of DprE1: synthesis and biological evaluation

, , &
Pages 333-352 | Received 12 Dec 2020, Accepted 03 Mar 2021, Published online: 31 Mar 2021

References

  • H. Wang, K. Lv, X. Li, B. Wang, A. Wang, Z. Tao, Y. Geng, B. Wang, M. Huang, and M. Liu, Design, synthesis and antimycobacterial activity of novel nitrobenzamide derivatives, Chin. Chem. Lett. 30 (2019), pp. 413–416. doi:10.1016/j.cclet.2018.08.005.
  • S. Datta and C.A. Evans, Healthy survival after tuberculosis, Lancet Infect. Dis. 19 (2019), pp. 1045–1047. doi:10.1016/S1473-3099(19)30387-1.
  • A. Jain and R. Mondal, Extensively drug-resistant tuberculosis: Current challenges and threats, FEMS. Immunol. Med. Mic. 53 (2008), pp. 145–150. doi:10.1111/j.1574-695X.2008.00400.x.
  • A.A. Velayati, P. Farnia, and S. Hoffner, Drug-resistant Mycobacterium tuberculosis: Epidemiology and role of morphological alterations, J. Glob. Antimicrob. Res. 12 (2018), pp. 192–196. doi:10.1016/j.jgar.2017.10.006.
  • H. Verma, S. Choudhary, P.K. Singh, A. Kashyap, and O. Silakari, Decoding the signature of molecular mechanism involved in mutation associated resistance to 1, 3-benzothiazin-4-ones (Btzs) based DprE1 inhibitors using BTZ043 as a reference drug, Mol. Simulat. 45 (2019), pp. 1515–1523. doi:10.1080/08927022.2019.1659507.
  • Organization WH (2018) Global tuberculosis report 2016.
  • A. Khan, A. Asghar, K. Hashmi, M. Farooq, B. Shaheen, and I. Ali, Mycobacterium tuberculosis: Pattern of first line drug resistance, APMC 13 (2019), pp. 80–83. doi:10.29054/APMC/19.563.
  • C. Trefzer, M. Rengifo-Gonzalez, M.J. Hinner, P. Schneider, V. Makarov, S.T. Cole, and K. Johnsson, Benzothiazinones: Prodrugs that covalently modify the decaprenylphosphoryl-β-D-ribose 2′-epimerase DprE1 of Mycobacterium tuberculosis, J. Am. Chem. Soc. 132 (2010), pp. 13663–13665. doi:10.1021/ja106357w.
  • M. Panda, S. Ramachandran, V. Ramachandran, P.S. Shirude, V. Humnabadkar, K. Nagalapur, S. Sharma, P. Kaur, S. Guptha, and A. Narayan, Discovery of pyrazolopyridones as a novel class of noncovalent DprE1 inhibitor with potent anti-mycobacterial activity, J. Med. Chem. 57 (2014), pp. 4761–4771. doi:10.1021/jm5002937.
  • R.V. Chikhale, M.A. Barmade, P.R. Murumkar, and M.R. Yadav, Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis, J. Med. Chem. 61 (2018), pp. 8563–8593. doi:10.1021/acs.jmedchem.8b00281.
  • R. Sommer, J. Neres, J. Piton, N. Dhar, A. Van Der Sar, R. Mukherjee, T. Laroche, P.J. Dyson, J.D. McKinney, and W. Bitter, Fluorescent benzothiazinone analogues efficiently and selectively label dpre1 in Mycobacteria and Actinobacteria, ACS Chem. Biol. 13 (2018), pp. 3184–3192. doi:10.1021/acschembio.8b00790.
  • Y. Gao, J. Xie, R. Tang, K. Yang, Y. Zhang, L. Chen, and H. Li, Identification of a pyrimidinetrione derivative as the potent DprE1 inhibitor by structure-based virtual ligand screening, Bioorg. Chem. 85 (2019), pp. 168–178. doi:10.1016/j.bioorg.2018.12.018.
  • H. Verma and O. Silakari, Benzoxazolinone: A scaffold with diverse pharmacological significance, in Key Heterocycle Cores for Designing Multitargeting Molecules, O. Silakari, ed., Elsevier, Amsterdam, The Netherlands, 2018, pp. 343–367. doi:10.1016/B978-0-08-102083-8.00010-8.
  • G.S. Pedgaonkar, J.P. Sridevi, V.U. Jeankumar, S. Saxena, P.B. Devi, J. Renuka, P. Yogeeswari, and D. Sriram, Development of benzo [d] oxazol-2 (3H)-ones derivatives as novel inhibitors of Mycobacterium tuberculosis InhA, Bioorg. Med. Chem. 22 (2014), pp. 6134–6145. doi:10.1016/j.bmc.2014.08.031.
  • A. Suwattanamala and V. Ruangpornvisuti, Isomeric structures of benzimidazole, benzoxazole, and benzothiazole derivatives, their electronic properties and transformations, Struct. Chem. 20 (2009), pp. 619–631. doi:10.1007/s11224-009-9454-8.
  • P. Xiang, T. Zhou, L. Wang, C.Y. Sun, J. Hu, Y.L. Zhao, and L. Yang, Novel benzothiazole, benzimidazole and benzoxazole derivatives as potential antitumor agents: Synthesis and preliminary in vitro biological evaluation, Molecules 17 (2012), pp. 873–883. doi:10.3390/molecules17010873.
  • J. Kočı́, V. Klimešová, K. Waisser, J. Kaustová, H.M. Dahse, and U. Möllmann, Heterocyclic benzazole derivatives with antimycobacterial in vitro activity, Bioorg. Med. Chem. Lett. 12 (2002), pp. 3275–3278. doi:10.1016/S0960-894X(02)00697-2.
  • S. Uenlue, T. Oenkol, Y. Duendar, B. Oekcelik, E. Kuepeli, E. Yeşilada, N. Noyanalpan, and M.F. Şahin, Synthesis and analgesic and anti‐inflammatory activity of some new (6‐acyl‐2‐benzoxazolinone and 6‐acyl‐2‐benzothiazolinone derivatives with acetic acid and propanoic acid residues, Arch. Pharm. 336 (2003), pp. 353–361. doi:10.1002/ardp.200300746.
  • S. Haider, M.S. Alam, H. Hamid, A. Dhulap, S. Umar, M.S. Yar, S. Bano, S. Nazreen, Y. Ali, and C. Kharbanda, Design, synthesis and docking studies of 2-benzoxazolinone-based 1, 2, 4-triazoles as proinflammatory cytokine inhibitors, Med. Chem. Res. 23 (2014), pp. 4250–4268. doi:10.1007/s00044-014-0989-x.
  • R. Shandil, M. Panda, C. Sadler, A. Ambady, V. Panduga, N. Kumar, J. Mahadevaswamy, M. Sreenivasaiah, A. Narayan, and S. Guptha, Scaffold morphing to identify novel dpre1 inhibitors with antimycobacterial activity, ACS. Med. Chem. Lett. 10 (2019), pp. 1480–1485. doi:10.1021/acsmedchemlett.9b00343.
  • S. Landge, A.B. Mullick, K. Nagalapur, J. Neres, V. Subbulakshmi, K. Murugan, A. Ghosh, C. Sadler, M.D. Fellows, and V. Humnabadkar, Discovery of benzothiazoles as antimycobac terial agents: Synthesis, structure–activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose 2′-oxidase, Bioorg. Med. Chem. 23 (2015), pp. 7694–7710. doi:10.1016/j.bmc.2015.11.017.
  • J. Gawad and C. Bonde, Design, synthesis and biological evaluation of some 2-(6-nitrobenzo [d] thiazol-2-ylthio)-N-benzyl-N-(6-nitrobenzo[d]thiazol-2-yl) acetamide derivatives as selective DprE1 inhibitors, Synth. Commun. 49 (2019), pp. 2696–2708. doi:10.1371/journal.pgen.0020088.
  • P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker, Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003), pp. 2498–2504. doi:10.1101/gr.1239303.
  • M. Naik, V. Humnabadkar, S.J. Tantry, M. Panda, A. Narayan, A. Guptha, V. Panduga, P. Manjrekar, L.K. Jena, and K. Koushik, 4-Aminoquinolone piperidine amides: Noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity, J. Med. Chem. 57 (2014), pp. 5419–5434. doi:10.1021/jm5005978.
  • P.S. Shirude, R. Shandil, C. Sadler, M. Naik, V. Hosagrahara, S. Hameed, V. Shinde, C. Bathula, V. Humnabadkar, and N. Kumar, Azaindoles: Noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo, J. Med. Chem. 56 (2013), pp. 9701–9708. doi:10.1021/jm401382v.
  • P.S. Shirude, R.K. Shandil, M. Manjunatha, C. Sadler, M. Panda, V. Panduga, J. Reddy, R. Saralaya, R. Nanduri, and A. Ambady, Lead optimization of 1, 4-azaindoles as antimycobacterial agents, J. Med. Chem. 57 (2014), pp. 5728–5737. doi:10.1021/jm500571f.
  • M. Chatterji, R. Shandil, M. Manjunatha, S. Solapure, V. Ramachandran, N. Kumar, R. Saralaya, V. Panduga, J. Reddy, and K. Prabhakar, 1, 4-Azaindole, a potential drug candidate for treatment of tuberculosis, Antimicrob. Agents Chemother. 58 (2014), pp. 5325–5331. doi:10.1128/AAC.03233-14.
  • V.S. Pore, J.M. Divse, C.R. Charolkar, L.U. Nawale, V.M. Khedkar, and D. Sarkar, Design and synthesis of 11α-substituted bile acid derivatives as potential anti-tuberculosis agents, Bioorg. Med. Chem. Lett. 25 (2015), pp. 4185–4190. doi:10.1016/j.bmcl.2015.08.006.
  • V. Makarov, J. Neres, R.C. Hartkoorn, O.B. Ryabova, E. Kazakova, M. Šarkan, S. Huszár, J. Piton, G.S. Kolly, and A. Vocat, The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis, Antimicrob. Agents Chemother. 59 (2015), pp. 4446–4452. doi:10.1128/AAC.00778-15.
  • M.H. Shaikh, D.D. Subhedar, M. Arkile, V.M. Khedkar, N. Jadhav, D. Sarkar, and B.B. Shingate, Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent, Bioorg. Med. Chem. Lett. 26 (2016), pp. 561–569. doi:10.1016/j.bmcl.2015.11.071.
  • R. Chikhale, S. Menghani, R. Babu, R. Bansode, G. Bhargavi, N. Karodia, M. Rajasekharan, A. Paradkar, and P. Khedekar, Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides, Eur. J. Med. Chem. 96 (2015), pp. 30–46. doi:10.1016/j.ejmech.2015.04.011.
  • S.M. Batt, M. Cacho Izquierdo, J. Castro Pichel, C.J. Stubbs, L. Vela-Glez Del Peral, E. Pérez-Herrán, N. Dhar, B. Mouzon, M. Rees, and J.P. Hutchinson, Whole cell target engagement identifies novel inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose oxidase, ACS. Infect. Dis. 12 (2015), pp. 615–626. doi:10.1021/acsinfecdis.5b00065.
  • T. Chitre, K. Asgaonkar, P. Miniyar, A. Dharme, M. Arkile, A. Yeware, D. Sarkar, V. Khedkar, and P. Jha, Synthesis and docking studies of pyrazine–thiazolidinone hybrid scaffold targeting dormant tuberculosis, Bioorg. Med. Chem. Lett. 26 (2016), pp. 2224–2228. doi:10.1016/j.bmcl.2016.03.055.
  • J. Neres, R.C. Hartkoorn, L.R. Chiarelli, R. Gadupudi, M.R. Pasca, G. Mori, A. Venturelli, S. Savina, V. Makarov, and G.S. Kolly, 2-Carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1, ACS Chem. Biol. 10 (2014), pp. 705–714. doi:10.1021/cb5007163.
  • M.H. Shaikh, D.D. Subhedar, L. Nawale, D. Sarkar, F.A.K. Khan, J.N. Sangshetti, and B.B. Shingate, 1, 2, 3-Triazole derivatives as antitubercular agents: Synthesis, biological evalu ation and molecular docking study, Med. Chem. Comm. 6 (2015), pp. 1104–1116. doi:10.1039/c5md00057b.
  • Ligprep, Version 2.5, User Manual, Schrödinger, LLC, New York, 2012.
  • W.L. Jorgensen, D.S. Maxwell, and J. Tirado- Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. (1996), pp. 11225–11236. doi:10.1021/ja9621760.
  • PHASE, Version 3.4, Schrödinger, LLC, New York, 2012.
  • B. Vyas, O. Silakari, M. Singh Bahia, and B. Singh, Glutamine: Fructose-6-phosphate amidotransferase (GFAT): Homology modelling and designing of new inhibitors using pharmacophore and docking based hierarchical virtual screening protocol, SAR QSAR Environ. Res. 24 (2013), pp. 733–752. doi:10.1080/1062.936X.2013.797493.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • Glide, Version 5.8, User Manual, Schrödinger, LLC, New York, 2012.
  • R. Schrödinger, Desmond Molecular Dynamics System, Vol. 4, DE Shaw Research, New York, 2015.
  • P. Mark and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem A 105 (2001), pp. 9954–9960. doi:10.1021/jp003020w.
  • S. Tinte, M.G. Stachiotti, S.R. Phillpot, M. Sepliarsky, D. Wolf, and R.L. Migoni, Ferroelectric properties of BaxSr1− xTiO3 solid solutions obtained by molecular dynamics simulation, J. Phys. Condens. Matter 16 (2004), pp. 3495–3506. doi:10.1088/0953-8984/16/20/019.
  • G.J. Martyna, D.J. Tobias, and M.L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101 (1994), pp. 4177–4189. doi:10.1063/1.467468.
  • Prime, Version 3.1, Schrödinger, LLC, New York, NY, 2012.
  • QikProp, Version 3.5, User Manual, Schrödinger, LLC, New York, NY, 2012.
  • E.E. Smissman, J.B. Lapidus, and S.D. Beck, Isolation and synthesis of an insect resistance factor from corn plants, J. Am. Chem. Soc. 79 (1957), pp. 4697–4698. doi:10.1021/ja01574a032.
  • J. Neres, R.C. Hartkoorn, L.R. Chiarelli, R. Gadupudi, M.R. Pasca, G. Mori, A. Venturelli, S. Savina, V. Makarov, G.S. Kolly, and E. Molteni, 2-Carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1, ACS. Chem. Bio. 20 (2015), pp. 705–714. doi:10.1021/cb5007163.
  • X. He and J. Zhang, Why do hubs tend to be essential in protein networks?, PLoS Genet. 2 (2006), pp. 826–834. doi:10.1371/journal.pgen.0020088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.