307
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSPR modelling for intrinsic viscosity in polymer–solvent combinations based on density functional theory

, , , , &
Pages 379-393 | Received 29 Dec 2020, Accepted 09 Mar 2021, Published online: 07 Apr 2021

References

  • D.W. Van Krevelen, Properties of Polymers, 3rd ed., Elsevier, Amsterdam, 1990.
  • S. Khaheshi, S. Riahi, M. Mohammadi-Khanaposhtani, and H. Shokrollahzadeh, Prediction of amines capacity for carbon dioxide absorption based on structural characteristics, Ind. Eng. Chem. Res. 58 (2019), pp. 8763–8771. doi: 10.1021/acs.iecr.9b00567.
  • A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, and O. Igglessi-Markopoulou, Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model, Polymer 47 (2006), pp. 3240–3248. doi:10.1016/j.polymer.2006.02.060.
  • P. Ghanshyam, N.I. Carl, L. Turab, and L.M. Babetta, Machine-learning-based predictive modeling of glass transition temperatures: A case of polyhydroxyalkanoate homopolymers and copolymers, J. Chem. Inf. Model. 59 (2019), pp. 5013–5025. doi:10.1021/acs.jcim.9b00807.
  • A.P. Toropova, A.A. Toropov, D. Leszczynska, and J. Leszczynski, The index of ideality of correlation: Hierarchy of Monte Carlo models for glass transition temperatures of polymers, J. Polym. Res. 25 (2018), pp. 221. doi:10.1007/s10965-018-1618-z.
  • M. Chen, J. Farukh, B. Rasulev, M. Ossowski, and P. Boudjouk, A computational structure-property relationship study of glass transition temperatures for a diverse set of polymers, J. Polym. Sci. Part B Polym. Phys. 56 (2018), pp. 877–885. doi:10.1002/polb.24602.
  • V. Venkatraman and B.K. Alsberg, Designing high-refractive index polymers using materials informatic, Polymers 10 (2018), pp. 103. doi:10.3390/polym10010103.
  • F. Jabeen, M. Chen, B. Rasulev, M. Ossowski, and P. Boudjouk, Refractive indices of diverse data set of polymers: A computational QSPR based study, Comput. Mater. Sci. 137 (2017), pp. 215–224. doi:10.1016/j.commatsci.2017.05.022.
  • K.P. Mohsin, R. Bakhtiyor, and R. Kunal, QSPR modeling of the refractive index for diverse polymers using 2D descriptors, ACS Omega 3 (2018), pp. 13374–13386. doi:10.1021/acsomega.8b01834.
  • J.G. Krishna, P.K. Ojha, S. Kar, K. Roy, and J. Leszczynski, Chemometric modeling of power conversion efficiency of organic dyes in dye sensitized solar cells for the future renewable energy, Nano Energy 70 (2020), pp. 104537. doi:10.1016/j.nanoen.2020.104537.
  • H. Li, Z. Zhong, L. Li, R. Gao, J. Cui, T. Gao, L.H. Hu, Y. Lu, Z.-M. Su, and H. Li, A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells, J. Comput. Chem. 36 (2015), pp. 1036–1046. doi:10.1002/jcc.23886.
  • A.V. Lyulin, G.R. Davies, and D.B. Adolf, Brownian dynamics simulations of dendrimers under shear flow, Macromolecules 33 (2000), pp. 3294–3304. doi:10.1021/ma992128a.
  • H. Johannesson and B. Schaub, Intrinsic viscosity for a polymer chain with self-avoiding interactions, Phys. Rev. A 35 (1987), pp. 3571–3574. doi:10.1103/PhysRevA.35.3571.
  • D.S. Boucher, Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods, J. Appl. Polym. Sci. 137 (2020), pp. 48908. doi:10.1002/app.48908.
  • P. Weerachanchai, Y. Wong, K.H. Lim, T.T.Y. Tan, and J.-M. Lee, Determination of solubility parameters of ionic liquids and ionic liquid/solvent mixtures from intrinsic viscosity, ChemPhysChem 15 (2014), pp. 3580–3591. doi:10.1002/cphc.201402345.
  • K.H. Han, G.S. Jeon, I.K. Hong, and S.B. Lee, Prediction of solubility parameter from intrinsic viscosity, J. Ind. Eng. Chem. 19 (2013), pp. 1130–1136. doi:10.1016/j.jiec.2012.12.009.
  • W.U. Nyalaliska, N. Behzad, D. Parisi, and H.C. Ralph, Determination of intrinsic viscosity of native cellulose solutions in ionic liquids, J. Rheol. 64 (2020), pp. 1063–1073. doi:10.1122/8.0000015.
  • I. Perevyazko, A. Gubarev, L. Tauhardt, A. Dobrodumov, G. Pavlov, and U. Schubert, Linear poly(ethylene imine)s: True molar masses, solution properties and conformation, Polym. Chem. 8 (2017), pp. 7169–7179. doi:10.1039/C7PY01634D.
  • M. Kurdziel, K. Królikowska, M. Łabanowska, S. Pietrzyk, and M. Michalec, The effect of thermal and irradiation treatments on structural and physicochemical properties of octenyl succinate maize starches, Food Chem. 330 (2020), pp. 127242. doi:10.1016/j.foodchem.2020.127242.
  • Y. Eom, H. Ju, Y. Park, D.W. Chae, Y.M. Jung, B.C. Kim, and H.G. Chae, Effect of dissolution pathways of polyacrylonitrile on the solution homogeneity thermodynamic- or kinetic-controlled dissolution, Polymer 205 (2020), pp. 122697. doi:10.1016/j.polymer.2020.122697.
  • F. Gharagheizi, QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN, Comput. Mater. Sci. 40 (2007), pp. 159–167. doi:10.1016/j.commatsci.2006.11.010.
  • R. Mortazavi, S. Mortazavi, and A. Troncoso, Wrapper-based feature selection using regression trees to predict intrinsic viscosity of polymer, Eng. Comput. 2 (2021), pp. 1–13.
  • I. Alisi, A. Uzairu, S. Abechi, and S. Idris, Quantitative structure activity relationship analysis of coumarins as free radical scavengers by genetic function algorithm, Phys. Chem. Res. 6 (2018), pp. 209–223.
  • S. Luo, Z. Wei, R. Spinney, Z. Yang, L. Chai, and R. Xiao, A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds, Chemosphere 172 (2017), pp. 333–340. doi:10.1016/j.chemosphere.2017.01.014.
  • L. Dang and S. Zhang, DFT-based theoretical prediction of intrinsic viscosity of polymer solutions, SAR QSAR Environ. Res. 29 (2018), pp. 1011–1021. doi:10.1080/1062936X.2018.1539035.
  • J. Bicerano, Prediction of Polymer Properties, 3rd ed., Marcel Dekker, New York, 2002.
  • J. Xu, B. Chen, Q. Zhang, and B. Guo, Prediction of refractive indices of linear polymers by a four-descriptor QSPR model, Polymer 45 (2004), pp. 8651–8659. doi:10.1016/j.polymer.2004.10.057.
  • H. Maouz, L. Khaouane, S. Hanini, Y. Ammi, M. Hamadache, and M. Laidi, QSPR studies of carbonyl, hydroxyl, polyene indices, and viscosity average molecular weight of polymers under photostabilization using ANN and MLR approaches, Kem. Ind. 69 (2020), pp. 1–16. doi:10.15255/KUI.2019.022.
  • D. Weininger, SMILES: A chemical language and information system, J. Chem. Inf. Comput. Sci. 28 (1988), pp. 31–36. doi:10.1021/ci00057a005.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
  • G. Landrum, RDKit: Open-source cheminformatics; software. Available at http://www.rdkit.org.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • R.M. Parrish, L.A. Burns, D.G.A. Smith, A.C. Simmonett, A.E. Deprince, E.G. Hohenstein, U. Bozkaya, A.Y. Sokolov, R. Di Remigio, R.M. Richard, J.F. Gonthier, A.M. James, H.R. Mcalexander, A. Kumar, M. Saitow, X. Wang, B.P. Pritchard, P. Verma, H.F. Schaefer, K. Patkowski, R.A. King, E.F. Valeev, F.A. Evangelista, J.M. Turney, T.D. Crawford, and C.D. Sherrill, Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability, J. Chem. Theory Comput. 13 (2017), pp. 3185–3197. doi:10.1021/acs.jctc.7b00174.
  • H. Moriwaki, Y.-S. Tian, N. Kawashita, and T. Takagi, Mordred: A molecular descriptor calculator, J. Cheminf. 10 (2018), pp. 4. doi:10.1186/s13321-018-0258-y.
  • D. Rogers and A.J. Hopfinger, Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships, J. Chem. Inf. Comput. Sci. 34 (1994), pp. 854–866. doi:10.1021/ci00020a020.
  • V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
  • B. Wang, H. Yi, K. Xu, and Q. Wang, Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models, J. Therm. Anal. Calorim. 128 (2017), pp. 399–406. doi:10.1007/s10973-016-5922-8.
  • Y. Pan, J. Jiang, R. Wang, and H. Cao, Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds, Chemom. Intell. Lab. Syst. 92 (2008), pp. 169–178. doi:10.1016/j.chemolab.2008.03.002.
  • A. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004), pp. 199–222. doi:10.1023/B:STCO.0000035301.49549.88.
  • C. Wen, B. Liu, J. Wolfgang, T.E. Long, R. Odle, and S. Cheng, Determination of glass transition temperature of polyimides from atomistic molecular dynamics simulations and machine-learning algorithms, J. Polym. Sci. 58 (2020), pp. 1521–1534. doi:10.1002/pol.20200050.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • H. Smith, Applied Regression Analysis, Springer, Berlin, 1981.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graphics Modell. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • R. Christoph, R. Gerta, and M. Markus, Y-randomization and its variants in QSPR/QSAR, J. Chem. Inf. Model. 47 (2007), pp. 2345–2357. doi:10.1021/ci700157b.
  • A.A. Berlin, Determination of the intrinsic viscosity of polymers in solution, Polym. Sci. U.S.S.R. 8 (1966), pp. 1465–1472. doi:10.1016/0032-3950(66)90156-0.
  • P. Parrini, F. Sebastiano, and G. Messina, Intrinsic viscosity and molecular weight of isotactic polypropylene, Macromol. Chem. Phys. 38 (1960), pp. 27–38. doi:10.1002/macp.1960.020380103.
  • R. Chiang, Intrinsic viscosities of isotactic polypropylene in various solvents, J. Phys. Chem. 70 (1966), pp. 929–930. doi:10.1021/j100875a504.
  • T.G. Fox and P.J. Flory, Intrinsic viscosity relationships for polystyrene, J. Am. Chem. Soc. 73 (1951), pp. 1915–1920. doi:10.1021/ja01149a004.
  • J.M. Barrales-Rienda and D.C. Pepper, Intrinsic viscosities and dimensions of poly(phenylene oxide), J. Polym. Sci. B Polym. Lett. 4 (1966), pp. 939–941.
  • G.S. Misra and P.K. Mukherjee, The relation between the molecular weight and intrinsic viscosity of polymethyl acrylate, Colloid Polym. Sci. 258 (1980), pp. 464–466.
  • H. Lowell and K. Lemont, Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 1039–1045. doi:10.1021/ci00028a014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.