158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSAR models for insecticidal properties of plant essential oils on the housefly (Musca domestica L.)

, , &
Pages 395-410 | Received 10 Dec 2020, Accepted 16 Mar 2021, Published online: 19 Apr 2021

References

  • A. Malik, N. Singh, and S. Satya, House fly (Musca domestica): A review of control strategies for a challenging pest, J. Environ. Sci. Health Part B 42 (2007), pp. 453–469. doi:10.1080/03601230701316481.
  • M. Förster, S. Klimpel, H. Mehlhorn, K. Sievert, S. Messler, and K. Pfeffer, Pilot study on synanthropic flies (e.g. Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms, Parasitol. Res. 101 (2007), pp. 243–246. doi:10.1007/s00436-007-0522-y.
  • P. Kumar, S. Mishra, A. Malik, and S. Satya, Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica), Acta Trop. 122 (2012), pp. 212–218. doi:10.1016/j.actatropica.2012.01.015.
  • S. Palacios, A. Bertoni, Y. Rossi, R. Santander, and A. Urzúa, Efficacy of essential oils from edible plants as insecticides against the house fly, Musca domestica L., Molecules 14 (2009), pp. 1938–1947. doi:10.3390/molecules14051938.
  • R. Morey and A. Khandagle, Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L., Parasitol. Res. 111 (2012), pp. 1799–1805. doi:10.1007/s00436-012-3027-2.
  • R. Pavela, Insecticidal properties of several essential oils on the house fly (Musca domestica L.), Phytother. Res. 22 (2008), pp. 274–278. doi:10.1002/ptr.2300.
  • P. Kumar, S. Mishra, A. Malik, and S. Satya, Efficacy of Mentha piperita and Mentha citrata essential oils against housefly, Musca domestica L., Ind. Crop. Prod. 39 (2012), pp. 106–112. doi:10.1016/j.indcrop.2012.02.021.
  • Y. Rossi, L. Canavoso, and S. Palacios, Molecular response of Musca domestica L. to Mintostachys verticillata essential oil, (4R)(+)-pulegone and menthone, Fitoterapia 83 (2012), pp. 336–342. doi:10.1016/j.fitote.2011.11.019.
  • G. Tarelli, E. Zerba, and R. Alzogaray, Toxicity to vapor exposure and topical application of essential oils and monoterpenes on Musca domestica (Diptera: Muscidae), Econ. Entomol. 102 (2009), pp. 1383–1388. doi:10.1603/029.102.0367.
  • N. Comelli, O. Romero, P. Diez, C. Marinho, P. Schliserman, A. Carrizo, E. Ortiz, and P.R. Duchowicz, QSAR study of biologically active essential oils against beetles infesting the walnut in Catamarca, Argentine, J. Agric. Food Chem. 66 (2018), pp. 12855–12865. doi:10.1021/acs.jafc.8b04161.
  • E.N. Muratov, E.V. Varlamova, A.G. Artemenko, P.G. Polishchuk, and V.E. Kuz’min, Existing and developing approaches for QSAR analysis of mixtures, Mol. Inf. 31 (2012), pp. 202–221. doi:10.1002/minf.201100129.
  • S. Ajmani, S.C. Rogers, M.H. Barley, A.N. Burgess, and D.J. Livingstone, Characterization of mixtures. Part 2: QSPR models for prediction of excess molar volume and liquid density using neural networks, Mol. Inf 29 (2010), pp. 645–653. doi:10.1002/minf.201000027.
  • T. Gaudin, P. Rotureau, and G. Fayet, Mixture descriptors toward the development of quantitative structure–property relationship models for the flash points of organic mixtures, Ind. Eng. Chem. Res. 54 (2015), pp. 6596–6604. doi:10.1021/acs.iecr.5b01457.
  • C. Hansch and A. Leo, Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC, USA, 1995.
  • K. Roy, Advances in QSAR Modeling. Applications in Pharmaceutical, Chemical, Food, Agricultural and Environmental Science, Challenges and Advances in Computational Chemistry and Physics Vol. 24 series editor J. Leszczynski, Springer, Berlin, Germany, 2017.
  • E. Benfenati, Theory, Guidance and Applications on QSAR and REACH, Orchestra, Milan, Italy, 2012. available at http://ebook.insilico.eu/insilico-ebook-orchestra-benfenati-ed1_rev-June2013.pdf.
  • P. Gramatica, Principles of QSAR modeling: Comments and suggestions from personal experience, IJQSPR 5 (2020), pp. 1–37.
  • A.R. Katritzky and E.V. Goordeva, Traditional topological indices vs. electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research, J. Chem. Inf. Comput. Sci. 33 (1993), pp. 835–857. doi:10.1021/ci00016a005.
  • M.V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, Nova Science Publishers, New York, 2001.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics (Methods and Principles in Medicinal Chemistry), Wiley-VCH, Weinheim, Germany, 2009.
  • V.H. Masand and V. Rastija, PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors, Chemom. Intell. Lab. Syst. 169 (2017), pp. 12–18. doi:10.1016/j.chemolab.2017.08.003.
  • E.N. Muratov, E.V. Varlamova, A.G. Artemenko, P.G. Polishchuk, L. Nikolaeva-Glomb, A.S. Galabov, and V.E. Kuz’min, QSAR analysis of poliovirus inhibition by dual combinations of antivirals, Struct. Chem. 24 (2013), pp. 1665–1679. doi:10.1007/s11224-012-0195-8.
  • Z. Lin, P. Zhong, K. Yin, L. Wang, and H. Yu, Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity, Chemosphere 52 (2003), pp. 1199–1208. doi:10.1016/S0045-6535(03)00329-1.
  • R.P. Pizzolitto, A.G. Jacquat, V.L. Usseglio, F. Achimón, A.E. Cuello, J.A. Zygadlo, and J.S. Dambolena, Quantitative-structure-activity relationship study to predict the antifungal activity of essential oils against Fusarium verticillioides, Food Control. 108 (2020), pp. 106836. doi:10.1016/j.foodcont.2019.106836.
  • P.R. Duchowicz, D.O. Bennardi, E.V. Ortiz, and N.C. Comelli, QSAR models for the fumigant activity prediction of essential oils, J. Mol. Graph. Model. 101 (2020), pp. 107751. doi:10.1016/j.jmgm.2020.107751.
  • S. Kar and J. Leszczynski, Exploration of computational approaches to predict the toxicity of chemical mixtures, Toxics 7 (2019), pp. 15–43. doi:10.3390/toxics7010015.
  • J. Kim, S. Kim, and G.E. Schaumann, Development of QSAR-based two-stage prediction model for estimating mixture toxicity, SAR QSAR Environ. Res. 24 (2013), pp. 841–861. doi:10.1080/1062936X.2013.815654.
  • L. Qin, Y. Chen, X. Zhang, L. Mo, H. Zeng, and Y. Liang, QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide, Chemosphere 198 (2018), pp. 122–129. doi:10.1016/j.chemosphere.2018.01.142.
  • T. Wang, L. Tang, F. Luan, and M. Cordeiro, Prediction of the toxicity of binary mixtures by QSAR approach using the hypothetical descriptors, Int. J. Mol. Sci. 19 (2018), pp. 3423–3438. doi:10.3390/ijms19113423.
  • P.R. Duchowicz, Linear regression QSAR models for polo-like kinase-1 inhibitors, Cells 7 (2018), pp. 1–11. doi:10.3390/cells7020013.
  • P.R. Duchowicz, N.A. Szewczuk, and A.B. Pomilio, QSAR Studies of the antioxidant activity of anthocyanins, J. Food. Sci. Technol. 56 (2019), pp. 5518–5530. doi:10.1007/s13197-019-04024-w.
  • P.R. Duchowicz, J.F. Aranda, D.E. Bacelo, and S.E. Fioressi, QSPR study of the Henry’s law constant for heterogeneous compounds, Chem. Eng. Res. Des. 154 (2020), pp. 115–121. doi:10.1016/j.cherd.2019.12.009.
  • N.A. Polyakov, V.A. Dubinskaya, A.A. Efremov, and E.A. Efremov, Biological activity of Abies sibirica essential oil and its major constituents for several enzymes in vitro, Pharm. Chem. J. 48 (2014), pp. 456–460. doi:10.1007/s11094-014-1131-6.
  • P. Satyal, P. Paudel, A. Poudel, N.S. Dosoky, D.M. Moriarity, B. Vogler, and W.N. Setzer, Chemical compositions, phytotoxicity, and biological activities of Acorus calamus essential oils from Nepal, Nat. Prod. Commun. 8 (2013), pp. 1179–1181.
  • N.E. Sandoval-Montemayor, A. García, E. Elizondo-Treviño, E. Garza-González, L. Alvarez, and M.D.R. Camacho-Corona, Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents, Molecules 17 (2012), pp. 11173–11184. doi:10.3390/molecules170911173.
  • G. Bertuzzi, B. Tirillini, P. Angelini, and R. Venanzoni, Antioxidative action of Citrus limonum essential oil on skin, Eur. J. Med. Plants 3 (2013), pp. 1–9. doi:10.9734/EJMP/2013/1987.
  • G. Razafimamonjison, M. Jahiel, T. Duclos, P. Ramanoelina, F. Fawbush, and P. Danthu, Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar, IJBAS 3 (2014), pp. 224–233.
  • I. Tumen, I. Suntar, F.J. Eller, H. Kelesx, and E.K.P. Akkol, Topical wound-healing effects and phytochemical composition of heartwood essential oils of Juniperus virginiana L., Juniperus occidentalis Hook., and Juniperus ashei J. Buchholz, J. Med. Food 16 (2013), pp. 48–55. doi:10.1089/jmf.2012.2472.
  • N. Sahraoui, M.A. Vian, I. Bornard, C. Boutekedjiret, and F. Chemat, Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation, J. Chromatogr. A 1210 (2008), pp. 229–233. doi:10.1016/j.chroma.2008.09.078.
  • T. Adzet, R. Ponz, E. Wolf, and E. Schulte, Content and composition of M. officinalis oil in relation to leaf position and harvest time, Planta Med. 58 (1992), pp. 562–564. doi:10.1055/s-2006-961551.
  • P.A.R. Ramanoelina, J.P. Bianchini, and E.M. Gaydou, Main industrial Niaouli (Melaleuca quinquenervia) oil chemotype productions from Madagascar, J. Essent. Oil Res. 20 (2008), pp. 261–266. doi:10.1080/10412905.2008.9700007.
  • A.K. Pandey, M.K. Rai, and D. Acharya, Chemical composition and antimycotic activity of the essential oils of corn mint (Mentha arvensis) and lemon grass (Cymbopogon flexuosus) against human pathogenic fungi, Pharm. Biol. 41 (2003), pp. 421–425. doi:10.1076/phbi.41.6.421.17825.
  • D.E. Lincoln, M.J. Murray, and B.M. Lawrence, Chemical composition and genetic basis for the isopinocamphone chemotype of Mentha citrata hybrids, Phytochemistry. 25 (1986), pp. 1857–1863. doi:10.1016/S0031-9422(00)81163-2.
  • D. Zhao, Y.W. Xu, G.L. Yang, A.M. Husaini, and W. Wu, Variation of essential oil of Mentha haplocalyx Briq. and Mentha spicata L. from China, Ind. Crops Prod. 42 (2013), pp. 251–260. doi:10.1016/j.indcrop.2012.06.010.
  • M. Chenni, D.E. Abed, N. Rakotomanomana, X. Fernandez, and F. Chemat, Comparative study of essential oils extracted from egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction, Molecules 21 (2016), pp. 113–128. doi:10.3390/molecules21010113.
  • C. Bouchra, M. Achouri, L.M.I. Hassani, and M. Hmamouchi, Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr., J. Ethnopharmacol. 89 (2003), pp. 165–169. doi:10.1016/S0378-8741(03)00275-7.
  • S.A. Selim, M.H.A. Aziz, M.S. Mashait, and M.F. Warrad, Antibacterial activities, chemical constitutes and acute toxicity of Egyptian Origanum majorana L., Peganum harmala L. and Salvia officinalis L. essential oils, Afr. J. Pharm. Pharmacol. 7 (2013), pp. 725–735.
  • V. Lagouri, G. Blekas, M. Tsimidou, S. Kokkini, and D. Boskou, Composition and antioxidant activity of essential oils from Oregano plants grown wild in Greece, Z. Lebensm. Unters. Forsch. 197 (1993), pp. 20–23. doi:10.1007/BF01202694.
  • J.J.A.V.D. Walt and F. Demarne, Pelargonium graveolens and P. radens: A comparison of their morphology and essential oils, S. Afr. J. Bot. 54 (1988), pp. 617–622. doi:10.1016/S0254-6299(16)31263-7.
  • S. Möllenbeck, T. König, P. Schreier, W. Schwab, J. Rajaonarivony, and L. Ranarivelo, Chemical composition and analyses of enantiomers of essential oils from Madagascar, Flavour Fragr. J. 12 (1997), pp. 63–69. doi:10.1002/(SICI)1099-1026(199703)12:2<63::AID-FFJ614>3.0.CO;2-Z.
  • H.S. Kusuma and M. Mahfud, The extraction of essential oils from patchouli leaves (Pogostemon cablin Benth) using a microwave air-hydrodistillation method as a new green technique, RSC Adv. 7 (2017), pp. 1336–1347. doi:10.1039/C6RA25894H.
  • A. Raal, A. Orav, and E. Arak, Composition of the essential oil of Salvia officinalis L. from various European countries, Nat. Prod. Res. 21 (2007), pp. 406–411. doi:10.1080/14786410500528478.
  • S.M. Kéïta, C. Vincent, J.-P. Schmidt, and J.T. Arnason, Insecticidal effects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus [Coleoptera: Bruchidae], Can. J. Plant Sci. 81 (2001), pp. 173–177. doi:10.4141/P00-059.
  • P.E. Tomei, P.L. Cioni, G. Flamini, and A. Stefani, Evaluation of the chemical composition of the essential oils of some Lamiaceae from Serrania de Ronda (Andalucia, Spain), J. Essent. Oil Res. 7 (1995), pp. 279–282. doi:10.1080/10412905.1995.9698519.
  • M.C. Rota, A. Herrera, R.M. Martínez, J.A. Sotomayor, and M.J. Jordan, Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils, Food Control 19 (2008), pp. 681–687. doi:10.1016/j.foodcont.2007.07.007.
  • Ö. Kılıç and A. Kocak, Volatile constituents of Juniperus communis L., Taxus canadensis Marshall. and Tsuga canadensis (L.) Carr. from Canada, J. Agric. Sci. Technol. B 4 (2014), pp. 135–140.
  • B. Huang, G. Wang, Z. Chu, and L. Qin, Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS, Dry. Technol 30 (2012), pp. 248–255. doi:10.1080/07373937.2011.634976.
  • ACDLabs/ChemSketch, available at http://www.acdlabs.com.
  • Open Babel for Windows1, available at http://openbabel.org/wiki/Category:Installation.
  • PaDEL 2.20 (pharmaceutical data exploration laboratory), available at http://www.yapcwsoft.com.
  • H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. Perkins, and W. Tong, Mold 2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics, J. Chem. Inf. Model. 48 (2008), pp. 1337–1344. doi:10.1021/ci800038f.
  • ISIDA/Fragmentor 2017, Laboratoire de Chémoinformatique, Chimie de la Matière Complexe (SMS UMR 7140), Université de Strasbourg, France, available at http://complex-matter.unistra.fr/equipes-de-recherche/laboratoire-de-chemoinformatique/home.
  • J.R. Valdés‑Martiní, Y. Marrero-Ponce, C.R. García-Jacas, K. Martinez-Mayorga, S.J. Barigye, Y. Silveira Vazd‘Almeida, H. Pham-The, F. Pérez-Giménez, and C.A. Morell, QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computations, J. Cheminform. 9 (2017), pp. 35–61. doi:10.1186/s13321-017-0211-5.
  • P.R. Duchowicz, E.A. Castro, and F.M. Fernández, Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies, MATCH Commun. Math. Comput. Chem. 55 (2006), pp. 179–192.
  • Octave 5.2.0, https://www.gnu.org/software/octave, last accessed 1 September 2020.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model 52 (2012), pp. 2044–2058. doi:10.1021/ci300084j.
  • K. Roy and P.P. Roy, Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques, Eur. J. Med. Chem. 44 (2009), pp. 2913–2922. doi:10.1016/j.ejmech.2008.12.004.
  • C. Rücker, G. Rücker, and M. Meringer, y-Randomization and its variants in QSPR/QSAR, J. Chem. Inf. Model. 47 (2007), pp. 2345–2357. doi:10.1021/ci700157b.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375. doi:10.1289/ehp.5758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.