247
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Classification and QSAR models of leukotriene A4 hydrolase (LTA4H) inhibitors by machine learning methods

, &
Pages 411-431 | Received 01 Feb 2021, Accepted 27 Mar 2021, Published online: 26 Apr 2021

References

  • V.M. Tanis, G.M. Bacani, J.M. Blevitt, C.C. Chrovian, S. Crawford, A. De Leon, A.M. Fourie, L. Gomez, C.A. Grice, K. Herman, A.M. Kearney, A.M. Landry-Bayle, A. Lee-Dutra, J. Nelson, J.P. Riley, A. Santillan Jr., J.J. Wiener, X. Xue, and A.L. Young, Azabenzthiazole inhibitors of leukotriene A(4) hydrolase, Bioorg. Med. Chem. Lett. 22 (2012), pp. 7504–7511. doi:10.1016/j.bmcl.2012.10.036.
  • S. Thangapandian, S. John, M. Son, V. Arulalapperumal, and K.W. Lee, Development of predictive quantitative structure-activity relationship model and its application in the discovery of human leukotriene A4 hydrolase inhibitors, Future Med. Chem. 5 (2013), pp. 27–40. doi:10.4155/fmc.12.184.
  • A. Stsiapanava, U. Olsson, M. Wan, T. Kleinschmidt, D. Rutishauser, R.A. Zubarev, B. Samuelsson, A. Rinaldo-Matthis, and J.Z. Haeggstrom, Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor, Proc. Natl. Acad. Sci. USA. 111 (2014), pp. 4227–4232. doi:10.1073/pnas.1402136111.
  • D. Moser, S.K. Wittmann, J. Kramer, R. Blocher, J. Achenbach, D. Pogoryelov, and E. Proschak, PENG: A neural gas-based approach for pharmacophore elucidation. method design, validation, and virtual screening for novel ligands of LTA4H, J. Chem. Inf. Model. 55 (2015), pp. 284–293. doi:10.1021/ci500618u.
  • L. Bhatt, K. Roinestad, T. Van, and E.B. Springman, Recent advances in clinical development of leukotriene B4 pathway drugs, Semin. Immunol. 33 (2017), pp. 65–73. doi:10.1016/j.smim.2017.08.007.
  • X. Jiang, L. Zhou, D. Wei, H. Meng, Y. Liu, and L. Lai, Activation and inhibition of leukotriene A4 hydrolase aminopeptidase activity by diphenyl ether and derivatives, Bioorg. Med. Chem. Lett. 18 (2008), pp. 6549–6552. doi:10.1016/j.bmcl.2008.10.044.
  • K. Pal, X. Feng, J.W. Steinke, M.D. Burdick, Y.M. Shim, S.S. Sung, W.G. Teague, and L. Borish, Leukotriene A4 hydrolase activation and leukotriene B4 production by eosinophils in severe asthma, Am. J. Respir. Cell. Mol. Biol. 60 (2019), pp. 413–419. doi:10.1165/rcmb.2018-0175OC.
  • J.M. Wells, P.J. O’Reilly, T. Szul, D.I. Sullivan, G. Handley, C. Garrett, C.M. McNicholas, M.A. Roda, B.E. Miller, R. Tal-Singer, A. Gaggar, S.I. Rennard, P.L. Jackson, and J.E. Blalock, An aberrant leukotriene A4 hydrolase-proline-glycine-proline A 4 hydrolase–proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care. Med. 190 (2014), pp. 51–61. doi:10.1164/rccm.201401-0145OC.
  • D.R. Crosslin, S.H. Shah, S.C. Nelson, C.S. Haynes, J.J. Connelly, S. Gadson, P.J. Goldschmidt-Clermont, J.M. Vance, J. Rose, C.B. Granger, D. Seo, S.G. Gregory, W.E. Kraus, and E.R. Hauser, Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis, Hum. Genet. 125 (2009), pp. 217–229. doi:10.1007/s00439-008-0619-0.
  • S. Thangapandian, S. John, S. Sakkiah, and K.W. Lee, Pharmacophore-based virtual screening and Bayesian model for the identification of potential human leukotriene A4 hydrolase inhibitors, Eur. J. Med. Chem. 46 (2011), pp. 1593–1603. doi:10.1016/j.ejmech.2011.02.007.
  • S.A. Audat, N.A. Al-Shar’i, B.A. Al-Oudat, A. Bryant-Friedrich, M.F. Bedi, A.L. Zayed, and Q.A. Al-Balas, Identification of human leukotriene A4 hydrolase inhibitors using structure-based pharmacophore modeling and molecular docking, Molecules 25 (2020), pp. 2871. doi:10.3390/molecules25122871.
  • M.M. Thunnissen, B. Andersson, B. Samuelsson, C.H. Wong, and J. Haeggstrom, Crystal structures of leukotriene A4 A 4 hydrolase in complex with captopril and two competitive tight-binding inhibitors, Faseb J. 16 (2002), pp. 1648–1650. doi:10.1096/fj.01-1017fje.
  • S. Zhao, K. Yao, D. Li, K. Liu, G. Jin, M. Yan, Q. Wu, H. Chen, S.H. Shin, R. Bai, G. Wang, A.M. Bode, Z. Dong, Z. Guo, and Z. Dong, Inhibition of LTA4H by bestatin in human and mouse colorectal cancer, EBioMedicine 44 (2019), pp. 361–374. doi:10.1016/j.ebiom.2019.05.008.
  • A. Mira, M.A. Sabry, K. Shimizu, and F.M. Abdel Bar, A new pimarane-type diterpene obtained by biotransformation inhibits human HCT-116 colorectal carcinoma through inhibition of LTA4H activity, Med. Chem. Res. 29 (2020), pp. 759–766. doi:10.1007/s00044-020-02520-9.
  • L.A. Enache, I. Kennedy, D.W. Sullins, W. Chen, D. Ristic, G.L. Stahl, S. Dzekhtser, R.A. Erickson, C.R. Yan, F.W. Muellner, M.D. Krohn, J. Winger, V. Sandanayaka, J. Singh, D.E. Zembower, and A.S. Kiselyov, Development of a scalable synthetic process for DG-051B, a first-in-class inhibitior of LTA4H, Org. Process. Res. Dev. 13 (2009), pp. 1177–1184. doi:10.1021/op900231j.
  • V. Sandanayaka, B. Mamat, R.K. Mishra, J. Winger, M. Krohn, L.M. Zhou, M. Keyvan, L. Enache, D. Sullins, E. Onua, J. Zhang, G. Halldorsdottir, H. Sigthorsdottir, A. Thorlaksdottir, G. Sigthorsson, M. Thorsteinnsdottir, D.R. Davies, L.J. Stewart, D.E. Zembower, T. Andresson, A.S. Kiselyov, J. Singh, and M.E. Gurney, Discovery of 4-[(2S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic 4-[(2 S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis, J. Med. Chem. 53 (2010), pp. 573–585. doi:10.1021/jm900838g.
  • T.D. Penning, N.S. Chandrakumar, B.N. Desai, S.W. Djuric, A.F. Gasiecki, C.D. Liang, J.M. Miyashiro, M.A. Russell, L.J. Askonas, J.K. Gierse, E.I. Harding, M.K. Highkin, J.F. Kachur, S.H. Kim, D. Villani-Price, E.Y. Pyla, N.S. Ghoreishi-Haack, and W.G. Smith, Pyrrolidine and piperidine analogues of SC-57461A as potent, orally active inhibitors of leukotriene A4 hydrolase, Bioorg. Med. Chem. Lett. 12 (2002), pp. 3383–3386. doi:10.1016/S0960-894X(02)00760-6.
  • M.H. El-Naggar, A. Mira, F.M. Abdel Bar, K. Shimizu, M.M. Amer, and F.A. Badria, Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy, Bioorg. Med. Chem. 25 (2017), pp. 1277–1285. doi:10.1016/j.bmc.2016.12.048.
  • W. Eccles, J.M. Blevitt, J.N. Booker, C.C. Chrovian, S. Crawford, A.R. De Leon, X. Deng, A.M. Fourie, C.A. Grice, K. Herman, L. Karlsson, A.M. Kearney, A. Lee-Dutra, J. Liang, R. Luna, D. Pippel, N. Rao, J.P. Riley, A. Santillan, B. Savall, V.M. Tanis, X. Xue, and A.L. Young, Identification of benzofuran central cores for the inhibition of leukotriene A(4) hydrolase, Bioorg. Med. Chem. Lett. 23 (2013), pp. 811–815. doi:10.1016/j.bmcl.2012.11.074.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to?, J. Med. Chem. 57 (2014), pp. 4977–5010. doi:10.1021/jm4004285.
  • P.B. Paz, E.G. Vega-Hissi, M.F. Andrada, M.R. Estrada, and J.C. Garro Martinez, Quantitative structure activity relationship and binding investigation of N-alkyl glycine amides as inhibitors of leukotriene A4 hydrolase, Med. Chem. Res. 24 (2014), pp. 496–504. doi:10.1007/s00044-014-1121-y.
  • Y. Xi, Z. Qin, and A. Yan, SAR and QSAR models of cyclooxygenase-1 (COX-1) inhibitors, SAR QSAR Environ. Res. 29 (2018), pp. 755–784. doi:10.1080/1062936X.2018.1513952.
  • Z. Qin and A. Yan, QSAR studies on hepatitis C virus NS5A protein tetracyclic inhibitors in wild type and mutants by CoMFA and CoMSIA, SAR QSAR Environ. Res. 31 (2020), pp. 281–311. doi:10.1080/1062936X.2020.1740889.
  • V. Sandanayaka, B. Mamat, N. Bhagat, L. Bedell, G. Halldorsdottir, H. Sigthorsdottir, T. Andresson, A. Kiselyov, M. Gurney, and J. Singh, Discovery of novel leukotriene A4 hydrolase inhibitors based on piperidine and piperazine scaffolds, Bioorg. Med. Chem. Lett. 20 (2010), pp. 2851–2854. doi:10.1016/j.bmcl.2010.03.047.
  • Z. Chen, Y. Wu, Y. Liu, S. Yang, Y. Chen, and L. Lai, Discovery of dual target inhibitors against cyclooxygenases and leukotriene A4 A 4 hydrolyase, J. Med. Chem. 54 (2011), pp. 3650–3660. doi:10.1021/jm200063s.
  • C.A. Grice, K.L. Tays, B.M. Savall, J. Wei, C.R. Butler, F.U. Axe, S.D. Bembenek, A.M. Fourie, P.J. Dunford, K. Lundeen, F. Coles, X. Xue, J.P. Riley, K.N. Williams, L. Karlsson, and J.P. Edwards, Identification of a potent, selective, and orally active leukotriene A4 A 4 hydrolase inhibitor with anti-inflammatory activity, J. Med. Chem. 51 (2008), pp. 4150–4169. doi:10.1021/jm701575k.
  • T.D. Penning, L.J. Askonas, S.W. Djuric, R.A. Haack, S.S. Yu, M.L. Michener, G.G. Krivi, and E.Y. Pyla, Kelatorphan and related analogs: Potent and selective inhibitors of leukotriene A4 hydrolase, Bioorg. Med. Chem. Lett. 5 (1995), pp. 2517–2522. doi:10.1016/0960-894X(95)00441-U.
  • H. Meng, Y. Liu, Y. Zhai, and L. Lai, Optimization of 5-hydroxytryptamines as dual function inhibitors targeting phospholipase A2 and leukotriene A4 hydrolase, Eur. J. Med. Chem. 59 (2013), pp. 160–167. doi:10.1016/j.ejmech.2012.10.057.
  • T.D. Penning, N.S. Chandrakumar, B.B. Chen, H.Y. Chen, B.N. Desai, S.W. Djuric, S.H. Docter, A.F. Gasiecki, R.A. Haack, J.M. Miyashiro, M.A. Russell, S.S. Yu, D.G. Corley, R.C. Durley, B.F. Kilpatrick, B.L. Parnas, L.J. Askonas, J.K. Gierse, E.I. Harding, M.K. Highkin, J.F. Kachur, S.H. Kim, G.G. Krivi, D. Villani-Price, E.Y. Pyla, W.G. Smith, and N.S. Ghoreishi-Haack, Structure−activity relationship studies on 1-[2-(4-phenylphenoxy)ethyl]pyrrolidine (SC-22716), a potent inhibitor of leukotriene A4 (LTA4) hydrolase, J. Med. Chem. 43 (2000), pp. 721–735. doi:10.1021/jm990496z.
  • B. Ye, J. Bauman, M. Chen, D. Davey, S.K. Khim, B. King, T. Kirkland, M. Kochanny, A. Liang, D. Lentz, K. May, L. Mendoza, G. Phillips, V. Selchau, S. Schlyer, J.L. Tseng, R.G. Wei, H. Ye, J. Parkinson, and W.J. Guilford, Synthesis of N-alkyl glycine amides as potent inhibitors of leukotriene A4 hydrolase, Bioorg. Med. Chem. Lett. 18 (2008), pp. 3891–3894. doi:10.1016/j.bmcl.2008.06.046.
  • T.D. Penning, M.A. Russell, B.B. Chen, H.Y. Chen, C.D. Liang, M.W. Mahoney, J.W. Malecha, J.M. Miyashiro, S.S. Yu, L.J. Askonas, J.K. Gierse, E.I. Harding, M.K. Highkin, J.F. Kachur, S.H. Kim, D. Villani-Price, E.Y. Pyla, N.S. Ghoreishi-Haack, and W.G. Smith, Synthesis of potent leukotriene A4 A 4 hydrolase inhibitors. Identification of 3-[methyl[3-[4-(phenylmethyl)phenoxy]propyl]amino]propanoic acid, J. Med. Chem. 45 (2002), pp. 3482–3490. doi:10.1021/jm0200916.
  • D. Penning, N.S. Chandrakumar, B.N. Desai, S.W. Djuric, A.F. Gasiecki, J.W. Malecha, J.M. Miyashiro, M.A. Russell, L.J. Askonas, J.K. Gierse, E.I. Harding, M.K. Highkin, J.F. Kachur, S.H. Kim, D. Villani-Price, E.Y. Pyla, N.S. Ghoreishi-Haack, and W.G. Smith, Synthesis of imidazopyridines and purines as potent inhibitors of leukotriene A4 hydrolase, Bioorg. Med. Chem. Lett. 13 (2003), pp. 1137–1139. doi:10.1016/s0960-894x(03)00039-8.
  • S.K. Khim, J. Bauman, J. Evans, B. Freeman, B. King, T. Kirkland, M. Kochanny, D. Lentz, A. Liang, L. Mendoza, G. Phillips, J.L. Tseng, R.G. Wei, H. Ye, L. Yu, J. Parkinson, and W.J. Guilford, Discovery of novel and potent aryl diamines as leukotriene A4 hydrolase inhibitors, Bioorg. Med. Chem. Lett. 18 (2008), pp. 3895–3898. doi:10.1016/j.bmcl.2008.06.041.
  • D. Wei, X. Jiang, L. Zhou, J. Chen, Z. Chen, C. He, K. Yang, Y. Liu, J. Pei, and L. Lai, Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching, J. Med. Chem. 51 (2008), pp. 7882–7888. doi:10.1021/jm8010096.
  • E. Shang, Y. Yuan, X. Chen, Y. Liu, J. Pei, and L. Lai, De novo design of multitarget ligands with an iterative fragment-growing strategy, J. Chem. Inf. Model. 54 (2014), pp. 1235–1241. doi:10.1021/ci500021v.
  • W. Lu, X. Yao, P. Ouyang, N. Dong, D. Wu, X. Jiang, Z. Wu, C. Zhang, Z. Xu, Y. Tang, S. Zou, M. Liu, J. Li, M. Zeng, P. Lin, F. Cheng, and J. Huang, Drug repurposing of histone deacetylase inhibitors that alleviate neutrophilic inflammation in acute lung injury and idiopathic pulmonary fibrosis via inhibiting leukotriene A4 hydrolase and blocking LTB4 biosynthesis, J. Med. Chem. 60 (2017), pp. 1817–1828. doi:10.1021/acs.jmedchem.6b01507.
  • W. Yuan, B. Munoz, C.H. Wong, J.Z. Haeggstroem, A. Wetterholm, and B. Samuelsson, Development of selective tight-binding inhibitors of leukotriene A4 hydrolase, J. Med. Chem. 36 (1993), pp. 211–220. doi:10.1021/jm00054a004.
  • D.R. Davies, B. Mamat, O.T. Magnusson, J. Christensen, M.H. Haraldsson, R. Mishra, B. Pease, E. Hansen, J. Singh, D. Zembower, H. Kim, A.S. Kiselyov, A.B. Burgin, M.E. Gurney, and L.J. Stewart, Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography, J. Med. Chem. 52 (2009), pp. 4694–4715. doi:10.1021/jm900259h.
  • S.K. Wittmann, L. Kalinowsky, J.S. Kramer, R. Bloecher, S. Knapp, D. Steinhilber, D. Pogoryelov, E. Proschak, and J. Heering, Thermodynamic properties of leukotriene A4 hydrolase inhibitors, Bioorg. Med. Chem. 24 (2016), pp. 5243–5248. doi:10.1016/j.bmc.2016.08.047.
  • M. Merkow and R.K. DeLisle, Improving the performance of self-organizing maps via growing representations, J. Chem. Inf. Model. 47 (2007), pp. 1797–1807. doi:10.1021/ci7001445.
  • SONNIA, available from molecular networks GmbH, Erlangen, Germany, Available at http://www.molecular-networks.com.
  • J.W. Godden, L. Xue, and J. Bajorath, Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and tanimoto coefficients, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 163–166. doi:10.1021/ci990316u.
  • L. Hefke, K. Hiesinger, W.F. Zhu, J.S. Kramer, and E. Proschak, Computer-aided fragment growing strategies to design dual inhibitors of soluble epoxide hydrolase and LTA4 hydrolase, ACS Med. Chem. Lett. 11 (2020), pp. 1244–1249. doi:10.1021/acsmedchemlett.0c00102.
  • K. Hiesinger, A. Schott, J.S. Kramer, R. Blocher, F. Witt, S.K. Wittmann, D. Steinhilber, D. Pogoryelov, J. Gerstmeier, O. Werz, and E. Proschak, Design of dual inhibitors of soluble epoxide hydrolase and LTA4 LTA 4 hydrolase, ACS Med. Chem. Lett. 11 (2020), pp. 298–302. doi:10.1021/acsmedchemlett.9b00330.
  • C. Markert, G. Thoma, H. Srinivas, B. Bollbuck, and T.A. Rhn, Discovery of LYS006, a potent and highly selective inhibitor of leukotriene A 4 hydrolase, J. Med. Chem. 64 (2021), pp. 1889–1903. doi:10.1021/acs.jmedchem.0c01955.
  • B. Chen, R.P. Sheridan, V. Hornak, and J.H. Voigt, Comparison of random forest and pipeline pilot naive Bayes in prospective QSAR predictions, J. Chem. Inf. Model. 52 (2012), pp. 792–803. doi:10.1021/ci200615h.
  • RDKit 2019.03.4: An open-source cheminformatics software, San Francisco, CA, USA, 2019, Available at http://www.rdkit.org
  • CORINA symphony, 3D structure generator CORINA, developed and distributed by molecular networks GmbH, Erlangen, Germany 2017; software available at http://www.molecular-networks.com
  • E.W. Steyerberg, M.J. Eijkemans, and J.D. Habbema, Stepwise selection in small data sets: A simulation study of bias in logistic regression analysis, J. Clin. Epidemiol. 52 (1999), pp. 935–942. doi:10.1016/s0895-4356(99)00103-1.
  • C.Y. Liew, X.H. Ma, X. Liu, and C.W. Yap, SVM model for virtual screening of Lck inhibitors, J. Chem. Inf. Model. 49 (2009), pp. 877–885. doi:10.1021/ci800387z.
  • S. Palmer, N.M. O’Boyle, R.C. Glen, and J.B. Mitchell, Random forest models to predict aqueous solubility, J. Chem. Inf. Model. 47 (2007), pp. 150–158. doi:10.1021/ci060164k.
  • W. Zheng and A. Tropsha, Novel variable selection quantitative structure–property structure−property relationship approach based on the k-nearest-neighbor k -nearest-neighbor principle, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 185–194. doi:10.1021/ci980033m.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), pp. 2825–2830.
  • D.J. Livingstone and D.W. Salt, Judging the significance of multiple linear regression models, J. Med. Chem. 48 (2005), pp. 661–663. doi:10.1021/jm049111p.
  • N. Triballeau, F. Acher, I. Brabet, J.-P. Pin, and H.O. Bertrand, Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. application to high-throughput docking on metabotropic glutamate receptor subtype 4, J. Med. Chem. 48 (2005), pp. 2534–2547. doi:10.1021/jm049092j.
  • X. Bo, M. Yang, T. Dacheng, and H. Kaiqi, m-SNE: Multiview stochastic neighbor embedding, IEEE Trans. Syst. Man. Cybern. B Cybern. 41 (2011), pp. 1088–1096. doi:10.1109/TSMCB.2011.2106208.
  • F. Camastra and A. Verri, A novel kernel method for clustering, IEEE Trans. Pattern. Anal. Mach. Intell. 27 (2005), pp. 801–805. doi:10.1109/TPAMI.2005.88.
  • J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007), pp. 90–95. doi:10.1109/Mcse.2007.55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.