233
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design of phosphoryl containing podands with Li+/Na+ selectivity using machine learning

, &
Pages 521-539 | Received 30 Mar 2021, Accepted 09 May 2021, Published online: 09 Jun 2021

References

  • G. McCracken and P. Stott, Fusion: The Energy of the Universe, Elsevier, Burlington, 2005.
  • J.T. Warner, Lithium-Ion Battery. Chemistries, Elsevier, Amsterdam, 2019.
  • Z. He and Y. Liu, Fundamentals of lithium-ion supercapacitors, in Lithium-Ion Supercapacitors. Fundamentals and Energy Applications, L. Zhang, D.P. Wilkinson, Z. Chen, and J. Zhang, eds., Taylor & Francis Group, Boca Raton, 2018, pp. 1–11.
  • N.E. Prasad, A.A. Gokhale, and R.J.H. Wanhill, Aluminum-Lithium Alloys. Processing, Properties, and Applications, Elsevier, Oxford, 2014.
  • P. Meshram, B.D. Pandey, and T.R. Mankhand, Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy 150 (2014), pp. 192–208. doi:10.1016/j.hydromet.2014.10.012.
  • M. Bauer and M. Gitlin, The Essential Guide to Lithium Treatment, Springer, Switzerland, 2016.
  • J.M. Zhao, X.Y. Shen, F.L. Deng, F.C. Wang, Y. Wu, and H.Z. Liu, Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Sep. Purif. Technol. 78 (2011), pp. 345–351. doi:10.1016/j.seppur.2010.12.024.
  • Z. Li and K. Binnemans, Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using B-diketones and Cyanex 923, AIChE J. 66 (2020), pp. 1–12. doi:10.1002/aic.16246.
  • M.Y. Alyapyshev, V.A. Babain, and A.U. Yu, Recovery of minor actinides from high-level vastes: Modern trends, Russ. Chem. Rev. 85 (2016), pp. 943–961. doi:10.1070/RCR4589.
  • P.J. Panak and A. Geist, Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands, Chem. Rev. 113 (2013), pp. 1199–1236. doi:10.1021/cr3003399.
  • P.S. Lemport, P.I. Matveev, A.V. Yatsenko, M.V. Evsiunina, V.S. Petrov, B.N. Tarasevich, V.A. Roznyatovsky, P.V. Dorovatovskii, V.N. Khrustalev, S.S. Zhokhov, V.P. Solov’ev, L.A. Aslanov, V.G. Petrov, S.N. Kalmykov, V.G. Nenajdenko, and Y.A. Ustyniuk, The impact of alicyclic substituents on the extraction ability of new family of 1,10-phenanthroline-2,9-diamides, RSC Adv. 10 (2020), pp. 26022–26033. doi:10.1039/D0RA05182A.
  • H. Gohil, S. Chatterjee, S. Yadav, E. Suresh, and A.R. Paital, An ionophore for high lithium loading and selective capture from brine, Inorg. Chem. 58 (2019), pp. 7209–7219. doi:10.1021/acs.inorgchem.9b00135.
  • R.E.C. Torrejos, G.M. Nisola, H.S. Song, L.A. Limjuco, C.P. Lawagon, K.J. Parohinog, S. Koo, J.W. Han, and W.-J. Chung, Design of lithium selective crown ethers: Synthesis, extraction and theoretical binding studies, Chem. Eng. J. 326 (2017), pp. 921–933. doi:10.1016/j.cej.2017.06.005.
  • B. Swain, Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review, J. Chem. Technol. Biotechnol. 91 (2016), pp. 2549–2562. doi:10.1002/jctb.4976.
  • Y. Pranolo, Z. Zhu, and C.Y. Cheng, Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923, Hydrometallurgy 154 (2015), pp. 33–39. doi:10.1016/j.hydromet.2015.01.009.
  • C. Shi, D. Duan, Y. Jia, and Y. Jing, A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction, J. Mol. Liq. 200 (2014), pp. 191–195. doi:10.1016/j.molliq.2014.10.004.
  • B. El-Eswed, M. Sunjuk, Y.S. Al-Degs, and A. Shtaiwi, Solvent extraction of Li+ using organophosphorus ligands in the presence of ammonia, Sep. Sci. Technol. 49 (2014), pp. 1342–1348. doi:10.1080/01496395.2013.879665.
  • D.A. Lee, W.L. Taylor, W.J. McDowell, and J.S. Drury, Solvent extraction of lithium, J. Inorg. Nucl. Chem. 30 (1968), pp. 2807–2821. doi:10.1016/0022-1902(68)80410-5.
  • K. Kobiro, New class of lithium ion selective crown ethers with bulky decaline subunits, Coord. Chem. Rev. 148 (1996), pp. 135–149. doi:10.1016/0010-8545(96)01209-X.
  • R.A. Bartsch, I.-W. Yang, E.-G. Jeon, W. Walkowiak, and W.A. Charewicz, Selective transport of alkali metal cations in solvent extraction by proton-ionizable dibenzocrown ethers, Coord. Chem. Rev. 27 (1992), pp. 75–85. doi:10.1080/00958979209407944.
  • R.A. Bartsch, M.-J. Goo, G.D. Christian, X. Wen, B.P. Czech, E. Chapoteau, and A. Kumar, Influence of ring substituents and matrix on lithium/sodium selectivity of 14-crown-4 and benzo-13-crown-4 compounds, Anal. Chim. Acta 272 (1993), pp. 285–292. doi:10.1016/0003-2670(93)80581-5.
  • Y. Katayama, K. Nita, M. Ueda, H. Nakamura, M. Takagi, and K. Ueno, Synthesis of chromogenic crown ethers and liquid-liquid extraction of alkali metal ions, Anal. Chim. Acta 173 (1985), pp. 193–209. doi:10.1016/S0003-2670(00)84957-0.
  • R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R.L. Bruening, Thermodynamic and kinetic data for macrocycle interaction with cations and anions, Chem. Rev. 91 (1991), pp. 1721–2085. doi:10.1021/cr00008a003.
  • A. Bencini, A. Bianchi, A. Borselli, M. Ciampolini, E. Garcia-Espana, P. Dapporto, M. Micheloni, P. Paoli, J.A. Ramirez, and B. Valtancoli, Synthesis and characterization of the new macrocyclic cage 5,12,17-trimethyl-1,5,9,12,17-pentaazabicyclo[7.5.5]nonadecane (L), which can selectively encapsulate lithium ion. Thermodynamic studies on protonation and complex formation. Crystal structures of the salt [HL][Cl].cntdot.3H2O and of the lithium complex [LiL][BPh4], Inorg. Chem. 28 (1989), pp. 4279–4284. doi:10.1021/ic00322a020.
  • W. Sliwa and T. Girek, Calixarene complexes with metal ions, J. Inclusion Phenom. Macrocyclic Chem. 66 (2010), pp. 15–41. doi:10.1007/s10847-009-9678-7.
  • D.J. Cram, Preorganization - From solvents to spherands, Angew. Chem. Int. Ed. Engl. 25 (1986), pp. 1039–1134. doi:10.1002/anie.198610393.
  • S. Katsuta, T. Imoto, Y. Kudo, and Y. Takeda, Selective extraction of lithium with macrocyclic trinuclear complex of (1,3,5-trimethylbenzene)ruthenium(II) bridged by 2,3-dioxopyridine, Anal. Sci. 24 (2008), pp. 1215–1217. doi:10.2116/analsci.24.1215.
  • I.S. Ivanova, A.B. Ilyukhin, G.S. Tsebrikova, I.N. Polyakova, E.N. Pyatova, V.P. Solov’ev, V.E. Baulin, and A.Y. Tsivadze, 2,4,6-Tris[2-(diphenylphosphoryl)-4-ethylphenoxy]-1,3,5-triazine: A new ligand for lithium binding, Inorg. Chim. Acta 497 (2019), pp. 119095. doi:10.1016/j.ica.2019.119095.
  • K. Ishimori, H. Imura, and K. Ohashi, Effect of 1,10-phenanthroline on the extraction and separation of lithium(I), sodium(I) and potassium(I) with thenoyltrifluoroacetone, Anal. Chim. Acta 454 (2002), pp. 241–247. doi:10.1016/S0003-2670(01)01550-1.
  • R.G. Parr and R.G. Pearson, Absolute hardness: Companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983), pp. 7512–7516. doi:10.1021/ja00364a005.
  • A.F. Solotnov, V.P. Solov’ev, L.V. Govorkova, T.N. Kudrya, A.A. Chaikovskaya, and O.A. Raevskii, Complexation of phosphorus-containing macrocyclic compounds with calcium salts in acetonitrile, Koordinatsionnaya Khimiya 15 (1989), pp. 319–328.
  • M.I. Kabachnik and Y.M. Polikarpov, Steric aspects of polyphosphoryl ligand coordination and selectivity of metal complexing, Zhurnal Obshchei Khimii 58 (1988), pp. 1937–1962.
  • E.N. Tsvetkov, T.E. Kron, E.S. Petrov, and A.I. Shatenshtein, Phosphorus-containing podands. Monopodands with phosphinylmethyl terminal groups, Zhurnal Obshchei Khimii 54 (1984), pp. 2338–2344.
  • T.E. Kron and E.N. Tsvetkov, Phosphorus-containing podands. Di- and tripodands with the phosphinylmethyl terminal groups, Zhurnal Obshchei Khimii 55 (1985), pp. 562–566.
  • V.I. Evreinov, Z.N. Vostroknutova, A.N. Bovin, A.N. Degtyarev, and E.N. Tsvetkov, Phosphorus-containing podands. 3. Effect of the length of the polyether chain of bis(ortho-(diethoxyphosphinylmethoxy)phenyl) ethers of oligoethylene glycols on their complexing ability towards alkali metal cations, Bull. Acad. Sci. USSR Chem. Sci. 38 (1989), pp. 50–53. doi:10.1007/BF00953698.
  • I.S. Ivanova, V.E. Baulin, I.N. Polyakova, E.N. Pyatova, E.S. Krivorot’ko, E.N. Galkina, and A.Y. Tsivadze, Synthesis, complexing properties, and selectivity of bis(diphenylphosphorylmethyl) ethers of oligoethylene glycols. Crystal structure of 1,3-bis(diphenylphosphoryl)-2-oxapropane, Russ. J. Gen. Chem. 87 (2017), pp. 2574–2581. doi:10.1134/S107036321711010X.
  • V.P. Solov’ev V.E. Baulin, N.N. Strakhova, and L.V. Govorkova, Thermodynamics and selectivity of complexation of lithium and sodium thiocyanates with phosphorus-containing podands and compounds modeling the terminal groups of these podands, Russ. Chem. Bull. 43 (1994), pp. 1493–1499. doi:10.1007/BF00697134.
  • V.E. Baulin, Phosphoryl-containing podands. Synthesis, properties and application, D. diss., Institute of Physiologically Active Compounds, Chernogolovka, 2012.
  • V.P. Solov’ev, V.E. Baulin, N.N. Strakhova, V.P. Kazachenko, V.K. Belsky, A.A. Varnek, T.A. Volkova, and G. Wipff, Complexation of phosphoryl-containing mono-, bi- and tri-podands with alkali cations in acetonitrile. Structure of the complexes and binding selectivity, J. Chem. Soc. Perkin Trans. 2 (1998), pp. 1489–1498. doi:10.1039/a708245b.
  • V.I. Evreinov, V.E. Baulin, Z.N. Vostroknutova, N.A. Bondarenko, V.K. Syundyukova, and E.N. Tsvetkov, Phosphorus-containing podands .4. Effect of polyether chain length of oligoethylene glycol bis(ortho-diphenylphosphinylmethyl)phenyl ethers on their complex-forming and selective properties with respect to alkali metal cations, Bull. Acad. Sci. USSR Chem. Sci. 38 (1989), pp. 1828–1834. doi:10.1007/BF00957771.
  • V.I. Evreinov, Z.N. Vostroknutova, V.E. Baulin, N.A. Bondarenko, V.K. Syundyukova, and E.N. Tsvetkov, Phosphorus-containing podands - Effect of the structure of phosphoryl-containing fragments of monoethyleneglycol diethers on their complexing ability towards cations of alkali metals, Zhurnal Obschei Khimii 59 (1989), pp. 67–72.
  • V.I. Evreinov, Z.N. Vostroknutova, V.E. Baulin, V.K. Syundyukova, and E.N. Tsvetkov, Phosphorus-containing podands - Effect of the length of polyether chain of bis(ortho-(diethoxyphosphoryl)phenyl)ethers of oligoethyleneglycol on their complexing ability towards cations of alkali metals, Zhurnal Obschei Khimii (Russ.) 59 (1989), pp. 73–77.
  • V.I. Evreinov, A.E. Antoshin, Z.V. Safronova, A.V. Kharitonov, and E.N. Tsvetkov, Complex-forming and selectivity properties of substituted tetraphenylethylenediphosphine dioxides with respect to alkali metal cations, Bull. Acad. Sci. USSR Chem. Sci. 39 (1990), pp. 782–786. doi:10.1007/BF00960346..
  • V.I. Evreinov, Z.N. Vostroknutova, A.N. Bovin, A.N. Degtyarev, and E.N. Tsvetkov, Phosphorus-containing podands. Structure of terminal groups and complexing ability, Zhurnal Obschei Khimii 60 (1990), pp. 1506–1511.
  • V.I. Evreinov, V.E. Baulin, Z.N. Vostroknutova, Z.V. Safronova, I.B. Krashakova, V.K. Syundyukova, and E.N. Tsvetkov, Phosphorus-containing podands. 7. Complexing properties of ortho-diphenylphosphinyl-substituted diphenyl ethers of oligoethylene glycols with respect to alkali metal cations, Bull. Acad. Sci. USSR Chem. Sci. 40 (1991), pp. 1759–1766. doi:10.1007/BF00960399.
  • V.I. Evreinov, V.E. Baulin, Z.N. Vostroknutova, and E.N. Tsvetkov, Phosphorus-containing podands .10. An improved method for synthesizing oligo(ethylene glycol) bis[2-(diphenylphosphinoyl)ethyl] ethers and their complex-forming properties with respect to alkali metal cations in anhydrous acetonitrile, Russ. Chem. Bull. 42 (1993), pp. 472–477. doi:10.1007/BF00698434.
  • V.I. Evreinov, V.E. Baulin, Z.N. Vostroknutova, Z.V. Safronova, N.A. Bondarenko, and E.N. Tsvetkov, Phosphorus-containing podands. 12. Effect of alkyl and phenyl substituents near phosphorus atoms on the complexing ability of neutral monopodands - anomalous alkyl effect, Zhurnal Obshchei Khimii 65 (1995), pp. 223–231.
  • A.N. Bovin, Synthesis of mono-alpha-phosphorylated pyrocatechols and podands based on them, Ph.D. diss., Institute of Physiologically Active Compounds, Chernogolovka, 1987.
  • A.N. Bovin, V.I. Evreinov, Z.N. Vostroknutova, and E.N. Tsvetkov, Effect of a catechol segment in a polyether chain on the complexing ability of some phosphonate and quinoline monopodands, Bull. Acad. Sci. USSR Chem. Sci. 38 (1989), pp. 2398–2401. doi:10.1007/BF01168097.
  • A.N. Bovin, V.I. Evreinov, Z.V. Safronova, and E.N. Tsvetkov, Phosphorus-containing podands. 11. Synthesis of bis(ortho-diphenylphosphinyl)benzyl ethers of oligoethylene glycols and their complexing properties with respect to alkali metal cations, Russ. Chem. Bull. 42 (1993), pp. 912–916. doi:10.1007/BF00698960.
  • V.E. Baulin, Synthesis and complexing ability of podands with phosphinylphenyl terminal groups, Ph.D. diss., Institute of Physiologically Active Compounds, Chernogolovka, 1988.
  • V.E. Baulin, V.I. Evreinov, Z.N. Vostroknutova, N.A. Bondarenko, V.K. Syundyukova, and E.N. Tsvetkov, Phosphorus-containing podands. 9. Synthesis of oligoethylene glycol bis(diphenylphosphinylethyl) esters and their complexing properties with respect to alkali metal cations in a low-polarity solvent, Bull. Acad. Sci. USSR Chem. Sci. 41 (1992), pp. 914–918.doi:10.1007/BF00864538.
  • T.E. Kron, Synthesis and complexing ability of podands with phosphinylmethyl terminal groups, Ph.D. diss., A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow, 1986.
  • V.P. Solov’ev and A.A. Varnek, EdChemS (Editor of Chemical Structures), 2017; software available at http://vpsolovev.ru/programs/.
  • V.P. Solov’ev and A.A. Varnek, EdiSDF (Editor of Structure - Data Files), 2018; software available at http://vpsolovev.ru/programs/.
  • V.P. Solov’ev, A. Varnek, and G. Wipff, Modeling of ion complexation and extraction using substructural molecular fragments, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 847–858. doi:10.1021/ci9901340.
  • V. Solov’ev and A. Varnek, QSPR models on fragment descriptors, in Tutorials in Chemoinformatics, A. Varnek, ed., John Wiley & Sons Ltd, Strasbourg, 2017, pp. 135–162.
  • V.P. Solov’ev, A.Y. Tsivadze, and A.A. Varnek, New approach for accurate QSPR modeling of metal complexation: Application to stability constants of complexes of lanthanide Ions Ln3+, Ag+, Zn2+, Cd2+ and Hg2+ with organic ligands in water, Macroheterocycles 5 (2012), pp. 404–410. doi:10.6060/mhc2012.121104s.
  • V. Solov’ev, G. Marcou, A.Y. Tsivadze, and A. Varnek, Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO22+ with organic ligands: QSPR ensemble modeling of stability constants, Ind. Eng. Chem. Res. 51 (2012), pp. 13482–13489. doi:10.1021/ie301271s.
  • V.P. Solov’ev, N. Kireeva, A.Y. Tsivadze, and A. Varnek, QSPR ensemble modelling of alkaline-earth metal complexation, J. Inclusion Phenom. Macrocyclic Chem. 76 (2013), pp. 159–171. doi:10.1007/s10847-012-0185-x.
  • V. Solov’ev, A. Varnek, and A. Tsivadze, QSPR ensemble modelling of the 1:1 and 1:2 complexation of Co2+, Ni2+, and Cu2+ with organic ligands. Relationships between stability constants, J. Comput. Aided Mol. Des. 28 (2014), pp. 549–564. doi:10.1007/s10822-014-9741-3.
  • V. Solov’ev, N. Kireeva, S. Ovchinnikova, and A. Tsivadze, The complexation of metal ions with various organic ligands in water: Prediction of stability constants by QSPR ensemble modelling, J. Inclusion Phenom. Macrocyclic Chem. 83 (2015), pp. 89–101. doi:10.1007/s10847-015-0543-6.
  • V. Solov’ev, A. Tsivadze, G. Marcou, and A. Varnek, Classification of metal binders by naive Bayes classifier on the base of molecular fragment descriptors and ensemble modeling, Mol. Inf. 38 (2019), pp. 1900002. doi:10.1002/minf.201900002.
  • V. Solov’ev and A. Varnek, Thermodynamic radii of lanthanide ions derived from metal–ligand complexes stability constants, J. Inclusion Phenom. Macrocyclic Chem. 98 (2020), pp. 69–78. doi:10.1007/s10847-020-01010-0.
  • V.P. Solov’ev and A. Varnek, Anti-HIV activity of HEPT, TIBO, and cyclic urea derivatives: Structure-property studies, focused combinatorial library generation, and hits selection using substructural molecular fragments method, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 1703–1719. doi:10.1021/ci020388c.
  • A. Varnek, D. Fourches, V.P. Solov’ev, V.E. Baulin, A.N. Turanov, V.K. Karandashev, D. Fara, and A.R. Katritzky, “In Silico” design of new uranyl extractants based on phosphoryl-containing podands: QSPR studies, generation and screening of virtual combinatorial library, and experimental tests, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1365–1382. doi:10.1021/ci049976b.
  • V.P. Solov’ev and A.A. Varnek, ISIDA QSPR (In Silico Design and Data Analysis for Quantitative Structure-Property Relationships), 2018; software available at http://vpsolovev.ru/programs/.
  • C.C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 1–27. doi:10.1145/1961189.1961199.
  • G.E. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, Englewood Cliffs, New Jersey, 1977.
  • E. Martynko, V. Solov’ev, A. Varnek, A. Legin, and D. Kirsanov, QSPR modeling of potentiometric Mg2+/Ca2+ selectivity for PVC-plasticized sensor membranes, Electroanalysis 32 (2020), pp. 792–798. doi:10.1002/elan.201900648.
  • V.P. Solov’ev and A.A. Varnek, Structure-property modeling of metal binders using molecular fragments, Russ. Chem. Bull. 53 (2004), pp. 1434–1445. doi:10.1023/B:RUCB.0000046239.65581.99.
  • E.N. Tsvetkov, V.K. Syundyukova, and V.E. Baulin, Neutral mono- and dipodands with terminal phosphinylphenyl groups, Zh. Obshchei. Khim. 57 (1987), pp. 2456–2461.
  • T. Chai and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? — Arguments against avoiding RMSE in the literature, Geosci. Model Dev. 7 (2014), pp. 1247–1250. doi:10.5194/gmd-7-1247-2014.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • P.H. Muller, P. Neumann, and R. Storm, Tafeln der Mathematischen Statistik, VEB Fachbuchverlag, Leipzip, 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.