258
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Molecular mechanism concerning conformational changes of CDK2 mediated by binding of inhibitors using molecular dynamics simulations and principal component analysis

, ORCID Icon, , , &
Pages 573-594 | Received 10 Apr 2021, Accepted 23 May 2021, Published online: 16 Jun 2021

References

  • A. Borgne and R.M. Golsteyn, The role of cyclin-dependent kinases in apoptosis, Progr. Cell Cycle Res. 5 (2003), pp. 453–459.
  • B.E. Clurman, R.J. Sheaff, K. Thress, M. Groudine, and J.M. Roberts, Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation, Genes Dev. 10 (1996), pp. 1979–1990. doi:10.1101/gad.10.16.1979.
  • M. Xu, K.A. Sheppard, C.Y. Peng, A.S. Yee, and H. Piwnica-Worms, Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation, Mol. Cell. Biol. 14 (1994), pp. 8420–8431. doi:10.1128/MCB.14.12.8420.
  • G. Leone, J. DeGregori, R. Sears, L. Jakoi, and J.R. Nevins, Erratum: Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F, Nature 387 (1997), pp. 932. doi:10.1038/43230.
  • R.I. Brinkworth, R.A. Breinl, and B. Kobe, Structural basis and prediction of substrate specificity in protein serine/threonine kinases, Proc. Natl. Acad. Sci. USA 100 (2003), pp. 74–79. doi:10.1073/pnas.0134224100.
  • I. Neganova, X. Zhang, S. Atkinson, and M. Lako, Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells, Oncogene 28 (2009), pp. 20–30. doi:10.1038/onc.2008.358.
  • M.P. Martin, R. Alam, S. Betzi, D.J. Ingles, J.-Y. Zhu, and E. Schonbrunn, A novel approach to the discovery of small-molecule ligands of CDK2, Chembiochem 13 (2012), pp. 2128–2136. doi:10.1002/cbic.201200316.
  • L.T. Alexander, H. Mobitz, P. Drueckes, P. Savitsky, O. Fedorov, J.M. Elkins, C.M. Deane, S.W. Cowan-Jacob, and S. Knapp, Type II inhibitors targeting CDK2, ACS Chem. Biol. 10 (2015), pp. 2116–2125. doi:10.1021/acschembio.5b00398.
  • P. Pevarello, M.G. Brasca, R. Amici, P. Orsini, G. Traquandi, L. Corti, C. Piutti, P. Sansonna, M. Villa, B.S. Pierce, M. Pulici, P. Giordano, K. Martina, E.L. Fritzen, R.A. Nugent, E. Casale, A. Cameron, M. Ciomei, F. Roletto, A. Isacchi, G. Fogliatto, E. Pesenti, W. Pastori, A. Marsiglio, K.L. Leach, P.M. Clare, F. Fiorentini, M. Varasi, A. Vulpetti, and M.A. Warpehoski, 3-aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 1. Lead finding, J. Med. Chem. 47 (2004), pp. 3367–3380. doi:10.1021/jm031145u.
  • J. Cicenas and M. Valius, The CDK inhibitors in cancer research and therapy, J. Cancer Res. Clin. Oncol. 137 (2011), pp. 1409–1418. doi:10.1007/s00432-011-1039-4.
  • C. Massard, J.-C. Soria, D.A. Anthoney, A. Proctor, A. Scaburri, M.A. Pacciarini, B. Laffranchi, C. Pellizzoni, G. Kroemer, J.-P. Armand, R. Balheda, and C.J. Twelves, A first in man, phase I dose-escalation study of PHA-793887, an inhibitor of multiple cyclin-dependent kinases (CDK2, 1 and 4) reveals unexpected hepatotoxicity in patients with solid tumors, Cell Cycle 10 (2011), pp. 963–970. doi:10.4161/cc.10.6.15075.
  • P. Bose, G.L. Simmons, and S. Grant, Cyclin-dependent kinase inhibitor therapy for hematologic malignancies, Expert Opin. Investig. Drugs 22 (2013), pp. 723–738. doi:10.1517/13543784.2013.789859.
  • A. Echalier, J.A. Endicott, and M.E.M. Noble, Recent developments in cyclin-dependent kinase biochemical and structural studies, BBA-Proteins Proteomics 1804 (2010), pp. 511–519. doi:10.1016/j.bbapap.2009.10.002.
  • M. Ikuta, K. Kamata, K. Fukasawa, T. Honma, T. Machida, H. Hirai, I. Suzuki-Takahashi, T. Hayama, and S. Nishimura, Crystallographic approach to identification of cyclin-dependent kinase 4 (CDK4)-specific inhibitors by using CDK4 mimic CDK2 protein, J. Biol. Chem. 276 (2001), pp. 27548–27554. doi:10.1074/jbc.M102060200.
  • S. Betzi, R. Alam, M. Martin, D.J. Lubbers, H.J. Han, S.R. Jakkaraj, G.I. Georg, and E. Schonbrunn, Discovery of a potential allosteric ligand binding site in CDK2, ACS Chem. Biol. 6 (2011), pp. 492–501. doi:10.1021/cb100410m.
  • P. Ayaz, D. Andres, D.A. Kwiatkowski, -C.-C. Kolbe, P. Lienau, G. Siemeister, U. Lücking, and C.M. Stegmann, Conformational adaption may explain the slow dissociation kinetics of Roniciclib (BAY 1000394), a type I CDK inhibitor with kinetic selectivity for CDK2 and CDK9, ACS Chem. Biol. 11 (2016), pp. 1710–1719. doi:10.1021/acschembio.6b00074.
  • P. Hazel, S.H.B. Kroll, A. Bondke, M. Barbazanges, H. Patel, M.J. Fuchter, R.C. Coombes, S. Ali, A.G.M. Barrett, and P.S. Freemont, Inhibitor selectivity for cyclin-dependent kinase 7: A structural, thermodynamic, and modelling study, ChemMedChem 12 (2017), pp. 372–380. doi:10.1002/cmdc.201600535.
  • D.A. Heathcote, H. Patel, S.H.B. Kroll, P. Hazel, M. Periyasamy, M. Alikian, S.K. Kanneganti, A.S. Jogalekar, B. Scheiper, M. Barbazanges, A. Blum, J. Brackow, A. Siwicka, R.D.M. Pace, M.J. Fuchter, J.P. Snyder, D.C. Liotta, P.S. Freemont, E.O. Aboagye, R.C. Coombes, A.G.M. Barrett, and S. Ali, A Novel Pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor Xenografts following oral administration, J. Med. Chem. 53 (2010), pp. 8508–8522. doi:10.1021/jm100732t.
  • E. Schonbrunn, S. Betzi, R. Alam, M.P. Martin, A. Becker, H. Han, R. Francis, R. Chakrasali, S. Jakkaraj, A. Kazi, S.M. Sebti, C.L. Cubitt, A.W. Gebhard, L.A. Hazlehurst, J.S. Tash, and G.I. Georg, Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases, J. Med. Chem. 56 (2013), pp. 3768–3782. doi:10.1021/jm301234k.
  • C.R. Coxon, E. Anscombe, S.J. Harnor, M.P. Martin, B. Carbain, B.T. Golding, I.R. Hardcastle, L.K. Harlow, S. Korolchuk, C.J. Matheson, D.R. Newel, M.E.M. Noble, M. Sivaprakasam, S.J. Tudhope, D.M. Turner, L.Z. Wang, S.R. Wedge, C. Wong, R.J. Griffin, J.A. Endicott, and C. Cano, Cyclin-Dependent Kinase (CDK) Inhibitors: Structure–activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines, J. Med. Chem. 60 (2017), pp. 1746–1767. doi:10.1021/acs.jmedchem.6b01254.
  • L.L. Duan, G.Q. Feng, X.W. Wang, L.Z. Wang, and Q.G. Zhang, Effect of electrostatic polarization and bridging water on CDK2–ligand binding affinities calculated using a highly efficient interaction entropy method, Phys. Chem. Chem. Phys. 19 (2017), pp. 10140–10152. doi:10.1039/C7CP00841D.
  • J.Z. Chen, X.Y. Wang, J.Z.H. Zhang, and T. Zhu, Effect of substituents in different positions of aminothiazole hinge-binding scaffolds on Inhibitor–CDK2 association probed by interaction entropy method, ACS Omega 3 (2018), pp. 18052–18064. doi:10.1021/acsomega.8b02354.
  • L.L. Wang, Y.Q. Deng, J.L. Knight, Y.J. Wu, B. Kim, W. Sherman, J.C. Shelley, T. Lin, and R. Abel, Modeling local structural rearrangements using FEP/REST: Application to relative binding affinity predictions of CDK2 inhibitors, J. Chem. Theory Comput. 9 (2013), pp. 1282–1293. doi:10.1021/ct300911a.
  • M. De Vivo, M. Masetti, G. Bottegoni, and A. Cavalli, Role of molecular dynamics and related methods in drug discovery, J. Med. Chem. 59 (2016), pp. 4035–4061. doi:10.1021/acs.jmedchem.5b01684.
  • G.D. Hu, A.J. Ma, and J.H. Wang, Ligand selectivity mechanism and conformational changes in guanine riboswitch by molecular dynamics simulations and free energy calculations, J. Chem. Inf. Model. 57 (2017), pp. 918–928. doi:10.1021/acs.jcim.7b00139.
  • T. Hou, W. Zhang, D.A. Case, and W. Wang, Characterization of domain–peptide interaction interface: A case study on the amphiphysin-1 SH3 domain, J. Mol. Biol. 376 (2008), pp. 1201–1214. doi:10.1016/j.jmb.2007.12.054.
  • T. Zhu, J.Z.H. Zhang, and X. He, Automated Fragmentation QM/MM Calculation of amide proton chemical shifts in proteins with explicit solvent model, J. Chem. Theory Comput. 9 (2013), pp. 2104–2114. doi:10.1021/ct300999w.
  • L.L. Duan, G.Q. Feng, and Q.G. Zhang, Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy, Sci. Rep. 6 (2016). doi:10.1038/srep31488.
  • P. Wang, T. Fu, X. Zhang, F. Yang, G. Zheng, W. Xue, Y. Chen, X. Yao, and F. Zhu, Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD, BBA-Gen. Subjects 1861 (2017), pp. 2766–2777. doi:10.1016/j.bbagen.2017.07.022.
  • M.-J. Yang, X.-Q. Pang, X. Zhang, and K.-L. Han, Molecular dynamics simulation reveals preorganization of the chloroplast FtsY towards complex formation induced by GTP binding, J. Struct. Biol. 173 (2011), pp. 57–66. doi:10.1016/j.jsb.2010.07.013.
  • Q. Shao, J. Shi, and W. Zhu, Determining protein folding pathway and associated energetics through partitioned integrated-tempering-sampling simulation, J. Chem. Theory Comput. 13 (2017), pp. 1229–1243. doi:10.1021/acs.jctc.6b00967.
  • D. Song, R. Luo, and H.F. Chen, The IDP-specific force field ff14IDPSFF improves the conformer sampling of intrinsically disordered proteins, J. Chem. Inf. Model. 57 (2017), pp. 1166–1178. doi:10.1021/acs.jcim.7b00135.
  • F. Yan, X. Liu, S. Zhang, J. Su, Q. Zhang, and J. Chen, Effect of double mutations T790M/L858R on conformation and drug-resistant mechanism of epidermal growth factor receptor explored by molecular dynamics simulations, RSC Adv. 8 (2018), pp. 39797–39810. doi:10.1039/C8RA06844E.
  • J. Chen, X. Wang, L. Pang, J.Z.H. Zhang, and T. Zhu, Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations, Nucleic Acids Res. 47 (2019), pp. 6618–6631. doi:10.1093/nar/gkz499.
  • J. Wang and Y. Miao, Mechanistic insights into specific g protein interactions with adenosine receptors, J. Phys. Chem. B 123 (2019), pp. 6462–6473. doi:10.1021/acs.jpcb.9b04867.
  • J. Wang and Y. Miao, Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding, J. Chem. Phys. 153 (2020), pp. 154109. doi:10.1063/5.0021399.
  • J. Devillers, Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, CRC Press, Boca Raton, FL, 2018.
  • S.L. Wu, L.F. Wang, H.B. Sun, W. Wang, and Y.X. Yu, Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis, SAR QSAR Environ. Res. 31 (2020), pp. 547–570. doi:10.1080/1062936X.2020.1777584.
  • J. Chen, S. Zhang, W. Wang, L. Pang, Q. Zhang, and X. Liu, Mutation-induced impacts on the switch transformations of the GDP- and GTP-bound K-ras: Insights from multiple replica gaussian accelerated molecular dynamics and free energy analysis, J. Chem. Inf. Model. 61 (2021), pp. 1954–1969. doi:10.1021/acs.jcim.0c01470.
  • T. Hou and R. Yu, Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors:  Mechanism for binding and drug resistance, J. Med. Chem. 50 (2007), pp. 1177–1188. doi:10.1021/jm0609162.
  • X. Jia, M. Wang, Y. Shao, G. König, B.R. Brooks, J.Z.H. Zhang, and Y. Mei, Calculations of solvation free energy through energy reweighting from molecular mechanics to quantum mechanics, J. Chem. Theory Comput. 12 (2016), pp. 499–511. doi:10.1021/acs.jctc.5b00920.
  • J.M. Wang, P. Morin, W. Wang, and P.A. Kollman, Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA, J. Am. Chem. Soc. 123 (2001), pp. 5221–5230. doi:10.1021/ja003834q.
  • W. Wang and P.A. Kollman, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model, J. Mol. Biol. 303 (2000), pp. 567–582.
  • J. Chen, J. Wang, B. Yin, L. Pang, W. Wang, and W. Zhu, Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions, ACS Chem. Neurosci. 10 (2019), pp. 4303–4318. doi:10.1021/acschemneuro.9b00348.
  • Y. Gao, T. Zhu, and J. Chen, Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method, Chem. Phys. Lett. 706 (2018), pp. 400–408. doi:10.1016/j.cplett.2018.06.040.
  • L.F. Wang, Y. Wang, Z.Y. Yang, J. Zhao, H.B. Sun, and S.L. Wu, Revealing binding selectivity of inhibitors toward bromodomain-containing proteins 2 and 4 using multiple short molecular dynamics simulations and free energy analyses, SAR QSAR Environ. Res. 31 (2020), pp. 373–398. doi:10.1080/1062936X.2020.1748107.
  • J. Chen, W. Wang, H. Sun, L. Pang, and H. Bao, Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies, Comput. Biol. Med. 134 (2021), pp. 104485. doi:10.1016/j.compbiomed.2021.104485.
  • S. Wang, G. Griffiths, C.A. Midgley, A.L. Barnett, M. Cooper, J. Grabarek, L. Ingram, W. Jackson, G. Kontopidis, S.J. McClue, C. McInnes, J. McLachlan, C. Meades, M. Mezna, I. Stuart, M.P. Thomas, D.I. Zheleva, D.P. Lane, R.C. Jackson, D.M. Glover, D.G. Blake, and P.M. Fischer, Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents, Chem. Biol. 17 (2010), pp. 1111–1121. doi:10.1016/j.chembiol.2010.07.016.
  • R.M. Levy, A.R. Srinivasan, W.K. Olson, and J.A. McCammon, Quasi-harmonic method for studying very low frequency modes in proteins, Biopolymers 23 (1984), pp. 1099–1112. doi:10.1002/bip.360230610.
  • J. Chen, B. Yin, W. Wang, and H. Sun, Effects of disulfide bonds on binding of inhibitors to β-amyloid cleaving enzyme 1 decoded by multiple replica accelerated molecular dynamics simulations, ACS Chem. Neurosci. 11 (2020), pp. 1811–1826. doi:10.1021/acschemneuro.0c00234.
  • J. Chen, W. Wang, L. Pang, and W. Zhu, Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics, Phys. Chem. Chem. Phys. 22 (2020), pp. 21238–21250. doi:10.1039/D0CP03766D.
  • U. Schulze-Gahmen, H. Debondt, and S.-H. Kim, High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: Bound waters and natural ligand as guides for inhibitor design, J. Med. Chem. 39 (1996), pp. 4540–4546. doi:10.1021/jm960402a.
  • R. Salomon-Ferrer, D.A. Case, and R.C. Walker, An overview of the Amber biomolecular simulation package, WIREs Comput. Molec. Sci. 3 (2013), pp. 198–210. doi:10.1002/wcms.1121.
  • D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688. doi:10.1002/jcc.20290.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • J.M. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935. doi:10.1063/1.445869.
  • J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341. doi:10.1016/0021-9991(77)90098-5.
  • J.S.A. Izaguirre, D.P. Catarello, J.M. Wozniak, and R.D. Skeel, Langevin stabilization of molecular dynamics, J. Chem. Phys. 114 (2001), pp. 2090–2098.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593. doi:10.1063/1.470117.
  • D.R. Roe and T.E. Cheatham III, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. Model. 14 (1996), pp. 33–38. doi:10.1016/0263-7855(96)00018-5.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations, J. Biomol. Struct. Dyn. 36 (2018), pp. 1212–1224. doi:10.1080/07391102.2017.1317666.
  • L. Duan, X. Liu, and J.Z.H. Zhang, Interaction entropy: A new paradigm for highly efficient and reliable computation of protein–ligand binding free energy, J. Am. Chem. Soc. 138 (2016), pp. 5722–5728. doi:10.1021/jacs.6b02682.
  • J. Chen, X. Liu, S. Zhang, J. Chen, H. Sun, L. Zhang, and Q. Zhang, Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses, Phys. Chem. Chem. Phys. 22 (2020), pp. 2262–2275. doi:10.1039/C9CP05704H.
  • F. Yan, X. Liu, S. Zhang, J. Su, Q. Zhang, and J. Chen, Molecular dynamics exploration of selectivity of dual inhibitors 5M7, 65X, and 65Z toward fatty acid binding proteins 4 and 5, Int. J. Mol. Sci. 19 (2018), pp. 2496. doi:10.3390/ijms19092496.
  • S. Tian, J. Zeng, X. Liu, J. Chen, J.Z.H. Zhang, and T. Zhu, Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling, Phys. Chem. Chem. Phys. 21 (2019), pp. 22103–22112. doi:10.1039/C9CP03598B.
  • H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring, Phys. Chem. Chem. Phys. 16 (2014), pp. 22035–22045. doi:10.1039/C4CP03179B.
  • T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inf. Model. 51 (2011), pp. 69–82. doi:10.1021/ci100275a.
  • H. Sun, Y. Li, S. Tian, L. Xu, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set, Phys. Chem. Chem. Phys. 16 (2014), pp. 16719–16729. doi:10.1039/C4CP01388C.
  • L. Xu, H. Sun, Y. Li, J. Wang, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models, J. Phys. Chem. B 117 (2013), pp. 8408–8421. doi:10.1021/jp404160y.
  • H. Gohlke, C. Kiel, and D.A. Case, Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes, J. Mol. Biol. 330 (2003), pp. 891–913. doi:10.1016/S0022-2836(03)00610-7.
  • B. Xu, H. Shen, X. Zhu, and G. Li, Fast and accurate computation schemes for evaluating vibrational entropy of proteins, J. Comput. Chem. 32 (2011), pp. 3188–3193. doi:10.1002/jcc.21900.
  • T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins 11 (1991), pp. 205–217. doi:10.1002/prot.340110305.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A theoretical insight into selectivity of inhibitors toward two domains of bromodomain-containing protein 4 using molecular dynamics simulations, Chem. Biol. Drug Des. 91 (2018), pp. 828–840. doi:10.1111/cbdd.13148.
  • J. Chen, W. Wang, H. Sun, L. Pang, and B. Yin, Mutation-mediated influences on binding of anaplastic lymphoma kinase to crizotinib decoded by multiple replica Gaussian accelerated molecular dynamics, J. Comput. Aided Molec. Des. 34 (2020), pp. 1289–1305. doi:10.1007/s10822-020-00355-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.