284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors

& ORCID Icon
Pages 595-614 | Received 28 Mar 2021, Accepted 02 Jun 2021, Published online: 21 Jun 2021

References

  • W.F. Anderson, Gene therapy for genetic diseases, Hum. Gene Ther. 5 (1994), pp. 281–282. doi:10.1089/hum.1994.5.3-281.
  • M.G. Kaplitt, A. Feigin, C. Tang, H.L. Fitzsimons, P. Mattis, P.A. Lawlor, R.J. Bland, D. Young, K. Strybing, D. Eidelberg, and M.J. During, Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: An open label, phase I trial, Lancet 369 (2007), pp. 2097–2105. doi:10.1016/S0140-6736(07)60982-9.
  • B.A. Bunnell and R.A. Morgan, Gene therapy for infectious diseases, Clin. Microbiol. Rev. 11 (1998), pp. 42–56. doi:10.1128/CMR.11.1.42.
  • R. Wolkowicz and G. Nolan, Gene therapy progress and prospects: Novel gene therapy approaches for AIDS, Gene Ther. 12 (2005), pp. 467–476. doi:10.1038/sj.gt.3302488.
  • N.A. Horn, J.A. Meek, G. Budahazi, and M. Marquet, Cancer gene therapy using plasmid DNA: Purification of DNA for human clinical trials, Hum. Gene Ther. 6 (1995), pp. 565–573. doi:10.1089/hum.1995.6.5-565.
  • Z.R. Yang, H.F. Wang, J. Zhao, Y.Y. Peng, J. Wang, B.A. Guinn, and L.Q. Huang, Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy, Cancer Gene Ther. 14 (2007), pp. 599–615. doi:10.1038/sj.cgt.7701054.
  • G. Ermak, Emerging Medical Technologies, World scientific publishing Co. Pvt.Ltd, Singapore, 2015.
  • H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin, and D.G. Anderson, Non-viral vectors for gene-based therapy, Nat. Rev. Genet. 15 (2014), pp. 541–555. doi:10.1038/nrg3763.
  • C.E. Thomas, A. Ehrhardt, and M.A. Kay, Progress and problems with the use of viral vectors for gene therapy, Nat. Rev. Genet. 4 (2003), pp. 346–358. doi:10.1038/nrg1066.
  • N. Bessis, F.J. GarciaCozar, and M.C. Boissier, Immune responses to gene therapy vectors: Influence on vector function and effector mechanisms, Gene Ther. 11 (2004), pp. S10–S17. doi:10.1038/sj.gt.3302364.
  • C. Baum, O. Kustikova, U. Modlich, Z. Li, and B. Fehse, Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors, Hum. Gene Ther. 17 (2006), pp. 253–263. doi: 10.1089/hum.2006.17.253..
  • D. Niculescu-Duvaz, J. Heyes, and C.J. Springer, Structure-activity relationship in cationic lipid mediated gene transfection, Curr. Med. Chem. 10 (2005), pp. 1233–1261. doi:10.2174/0929867033457476.
  • S.K. Samal, M. Dash, S. Van Vlierberghe, D.L. Kaplan, E. Chiellini, C. Van Blitterswijk, L. Moroni, and P. Dubruel, Cationic polymers and their therapeutic potential, Chem. Soc. Rev. 41 (2012), pp. 7147–7194.
  • D. Pezzoli, F. Olimpieri, C. Malloggi, S. Bertini, A. Volonterio, and G. Candiani, Chitosan-graft-branched polyethylenimine copolymers: Influence of degree of grafting on transfection behavior, PLoS One 7 (2012), pp. e34711. doi:10.1371/journal.pone.0034711.
  • R. Labas, F. Beilvert, B. Barteau, S. David, R. Chèvre, and B. Pitard, Nature as a source of inspiration for cationic lipid synthesis, Genetica 138 (2010), pp. 153–168. doi:10.1007/s10709-009-9405-8.
  • A.D. Miller, The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy, Curr. Med. Chem. 10 (2005), pp. 1195–1211. doi:10.2174/0929867033457485.
  • H. Gonzalez, S.J. Hwang, and M.E. Davis, New class of polymers for the delivery of macromolecular therapeutics, Bioconjug. Chem. 10 (1999), pp. 1068–1074. doi:10.1021/bc990072j.
  • J.H. Jeong, S.W. Kim, and T.G. Park, Molecular design of functional polymers for gene therapy, Prog. Polym. Sci. 32 (2007), pp. 1239–1274.
  • T. Potta, Z. Zhen, T.S.P. Grandhi, and M.D. Christensen, Discovery of antibiotics-derived polymers for gene delivery using combinatorial synthesis and cheminformatics modeling, Biomaterials 35 (2014), pp. 1977–1988. doi:10.1016/j.biomaterials.2013.10.069.
  • B. Shi, M. Zheng, W. Tao, R. Chung, D. Jin, D. Ghaffari, and O.C. Farokhzad, Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems, Biomacromolecules 18 (2017), pp. 2231–2246. doi:10.1021/acs.biomac.7b00803.
  • W. Wagner, S. Sakiyama-Elbert, and G. Zhang, Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, London, 2020.
  • Z. Zhen, T. Potta, M.D. Christensen, E. Narayanan, K. Kanagal, C.M. Breneman, and K. Rege, Accelerated materials discovery using chemical informatics investigation of polymer physicochemical properties and transgene expression efficacy, ACS Biomater. Sci. Eng. 5 (2019), pp. 654–669. doi:10.1021/acsbiomaterials.8b00963.
  • M. Chen, M. Hu, D. Wang, G. Wang, X. Zhu, D. Yan, and J. Sun, Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides, Bioconjug. Chem. 23 (2012), pp. 1189–1199. doi:10.1021/bc300016b.
  • N.D. Stebbins, M.A. Ouimet, and K.E. Uhrich, Antibiotic-containing polymers for localized, sustained drug delivery, Adv. Drug Deliv. Rev. 78 (2014), pp. 77–87. doi:10.1016/j.addr.2014.04.006.
  • K. Rege, A. Ladiwala, S. Hu, M. Breneman, J.S. Dordick, and S.M. Cramer, Investigation of DNA-binding properties of an aminoglycoside-polyamine library using Quantitative Structure-Activity Relationship (QSAR) models, J. Chem. Inf. Model. 45 (2005), pp. 1854–1863. doi:10.1021/ci050082g.
  • B. Miryala, Z. Zhen, T. Potta, C.M. Breneman, and K. Rege, Parallel synthesis and quantitative structure-activity relationship (QSAR) modeling of aminoglycoside-derived lipopolymers for transgene expression, ACS Biomater. Sci. Eng. 1 (2015), pp. 656–668. doi:10.1021/acsbiomaterials.5b00045.
  • K. Roy, S. Kar, and R. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Academic press, New York, 2015.
  • S. Paz-Abuin, M.P. Pellin, M. Paz-Pazos, and A. Lopez-Quintela, Influence of the reactivity of amine hydrogens and the evaporation of monomers on the cure kinetics of epoxy-amine: Kinetic questions, Polymer (Guildf) 38 (1997), pp. 3795–3804. doi:10.1016/S0032-3861(96)00957-3.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • AlvaDesc (software for molecular descriptors calculation) version 2.0.2, 2020, https://www.alvascience.com, 2020.
  • R.W. Kennard and L.A. Stone, Computer aided design of experiments, Technometrics 11 (1969), pp. 137–148. doi:10.1080/00401706.1969.10490666.
  • H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, Quantitative structure–activity relationship prediction of blood-to-brain partitioning behavior using support vector machine, Eur. J. Pharm. Sci. 47 (2011), pp. 421–429. doi:10.1016/j.ejps.2012.06.021.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer, New York, 2015.
  • P.M. Khan and K. Roy, Current approaches for choosing feature selection and learning algorithms in quantitative structure–activity relationships (QSAR), Expert Opin. Drug Discov. 13 (2018), pp. 1075–1089. doi:10.1080/17460441.2018.1542428.
  • S. Wold, M. Sjöström, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemom. Intell. Lab. Syst. 58 (2001), pp. 109–130. doi:10.1016/S0169-7439(01)00155-1.
  • K. Roy and I. Mitra, On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design, Comb. Chem. High Throughput Screen. 14 (2011), pp. 450–474. doi:10.2174/138620711795767893.
  • K. Roy, I. Mitra, P. Ojha, S. Kar, R.N. Das, and H. Kabir, Introduction of rm2 (rank) metric incorporating rank-order predictions as an additional tool for validation of QSAR/QSPR models, Chemom. Intell. Lab. Syst. 118 (2012), pp. 200–210. doi:10.1016/j.chemolab.2012.06.004.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • K. Roy, P. Ambure, S. Kar, and P. Kumar Ojha, Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemom. 32 (2018), pp. e2992. doi:10.1002/cem.2992.
  • L.H. Hall and L.B. Kier, Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 1039–1045. doi:10.1021/ci00028a014.
  • J. Votano, M. Parham, L. Hall, L. Kier, S. Oloff, A. Tropsha, Q. Xie, and W. Tong, Three new consensus QSAR models for the prediction of Ames genotoxicity, Mutagenesis 19 (2004), pp. 365–377. doi:10.1093/mutage/geh043.
  • S. Gupta, N. Basant, D. Mohan, and K.P. Singh, Inter-moieties reactivity correlations: An approach to estimate the reactivity endpoints of major atmospheric reactants towards organic chemicals, RSC Adv. 6 (2016), pp. 50297–50305. doi:10.1039/C6RA06805G.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Vol. 11, John Wiley & Sons, New Jersey, 2008.
  • Y.S. Prabhakar, R.K. Rawal, M.K. Gupta, V.R. Solomon, and S.B. Katti, Topological descriptors in modeling the HIV inhibitory activity of 2-aryl-3-pyridyl-thiazolidin-4-ones, Comb. Chem. High Throughput Screen. 8 (2005), pp. 431–437. doi:10.2174/1386207054546531.
  • Z. Wu, D. Li, J. Meng, and H. Wang, Introduction to SIMCA-P and its application, in Handbook of Partial Least Squares, V.V. Esposito, W.W. Chin, J. Henseler, and H. Wang (Eds.), Berlin-Heidelberg, Springer, 2010, pp. 757–774.
  • K. Roy, Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, IGI Global, Hershey, Pennsylvania, 2015.
  • K. Roy and G. Ghosh, Introduction of extended topochemical atom (eta)indices in the valence electron mobile (vem) environment as tools for QSAR/QSPR studies, Internet Electron. J. Mol. Des. 2 (2003), pp. 599–620.
  • A. Karmakar, P. Ambure, T. Mallick, S. Das, K. Roy, and N.A. Begum, Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure–activity relationship, Med. Chem. Res. 28 (2019), pp. 723–741. doi:10.1007/s00044-019-02330-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.