95
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Double focus in the modelling of anti-influenza properties of 2-iminobenzimidazolines: pharmacology and toxicology

&
Pages 643-654 | Received 22 May 2021, Accepted 29 Jun 2021, Published online: 20 Jul 2021

References

  • World Health Organization, Influenza (Seasonal), 6 November 2018, Retrieved 22 June 2021. Available at https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal).
  • A.C. Hurt, M.G. Ison, F.G. Hayden, and A.J. Hay, Second isirv antiviral group conference: Overview, Influenza Other Respir. Viruses 7 (2013), pp. 1–7. doi:10.1111/irv.12207.
  • Y. Furuse, A. Suzuki, and H. Oshitani, Large-scale sequence analysis of M gene of influenza A viruses from different species: Mechanisms for emergence and spread of amantadine resistance, Antimicrob. Agents Chemother. 53 (2009), pp. 4457–4463. doi:10.1128/AAC.00650-09.
  • Y. Abed, N. Goyette, and G. Boivin, Generation and characterization of recombinant influenza A (H1N1) viruses harboring amantadine resistance mutations, Antimicrob. Agents Chemother. 49 (2005), pp. 556–559. doi:10.1128/AAC.49.2.556-559.2005.
  • M. Samson, A. Pizzorno, Y. Abed, and G. Boivin, Influenza virus resistance to neuraminidase inhibitors, Antiviral Res. 98 (2013), pp. 174–185. doi:10.1016/j.antiviral.2013.03.014.
  • R.S. Keri, A. Hiremathad, S. Budagumpi, and B.M. Nagaraja, Comprehensive review in current developments of benzimidazole-based medicinal chemistry, Chem. Biol. Drug Des. 86 (2015), pp. 19–65.
  • R. Sivakumar, R. Pradeepchandran, K.N. Jayaveera, P. Kumarnallasivan, P.R. Vijaianand, and R. Venkatnarayanan, Benzimidazole: An attractive pharmacophore in medicinal chemistry, Int. J. Pharm. Res. 3 (2011), pp. 19–31.
  • Y. Bansal and O. Silakari, The therapeutic journey of benzimidazoles: A review, Bioorg. Med. Chem. 20 (2012), pp. 6208–6236. doi:10.1016/j.bmc.2012.09.013.
  • K.P. Barot, S. Nikolova, I. Ivanov, and M.D. Ghate, Novel research strategies of benzimidazole derivatives: A review, Mini-Rev. Med. Chem. 13 (2013), pp. 1421–1447. doi:10.2174/13895575113139990072.
  • K.-L. Yu, X.A. Wang, R.L. Civiello, A.K. Trehan, B.C. Pearce, Z. Yin, K.D. Combrink, H.B. Gulgeze, Y. Zhang, K.F. Kadow, C.W. Cianci, J. Clarke, E.V. Genovesi, I. Medina, L. Lambo, P.R. Wyde, M. Krystal, and N.A. Meanwell, Respiratory syncytial virus fusion inhibitors. Part 3: Water-soluble benzimidazol-2-one derivatives with antiviral activity in vivo, Bioorg. Med. Chem. Lett. 16 (2006), pp. 1115–1122. doi:10.1016/j.bmcl.2005.11.109.
  • P.S. Seth, E.A. Jefferson, R.H. Griffey, and E.E. Swayze, Benzimidazoles and analogs thereof as antivirals, US Pat. 8,207,173 B2 (2012).
  • V.V. Zarubaev, A.S. Morkovnik, L.N. Divaeva, L.A. Karpinskaya, and G.S. Borodkin, Tautomeric and non-tautomeric N-substituted 2-iminobenzimidazolines as new lead compounds for the design of anti-influenza drugs: An in vitro study, Bioorg. Med. Chem. 24 (2016), pp. 5796–5803. doi:10.1016/j.bmc.2016.09.036.
  • R. Veerasamy and H. Rajak, QSAR studies on neuraminidase inhibitors as anti-influenza agents, Turk. J. Pharm. Sci. 18 (2021), pp. 151–156. doi:10.4274/tjps.galenos.2020.45556.
  • S.J. Barigye and M.P. Freitas, Ten years of the MIA-QSAR strategy: Historical development and applications, Int. J. Quant. Struct. Prop. Relat. 1 (2016), pp. 64–77.
  • S.J. Barigye, M.H. Duarte, C.A. Nunes, and M.P. Freitas, MIA-plot: A graphical tool for viewing descriptor contributions in MIA-QSAR, RSC Adv. 6 (2016), pp. 49604–49612. doi:10.1039/C6RA09593C.
  • C.N. Borges, S.J. Barigye, and M.P. Freitas, Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients, Mol. Phys. 115 (2017), pp. 3044–3050. doi:10.1080/00268976.2017.1347294.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Sys. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • I. Mitra, A. Saha, and K. Roy, Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants, Mol. Simul. 36 (2010), pp. 1067–1079. doi:10.1080/08927022.2010.503326.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on de definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678. doi:10.1021/ci900115y.
  • R. Kiralj and M.C. Ferreira, Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application, J. Braz. Chem. Soc. 20 (2009), pp. 770–787. doi:10.1590/S0103-50532009000400021.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Modell. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082. doi:10.1002/jcc.23231.
  • K. Roy, I. Mitra, S. Kar, P.K. Ojha, R.N. Das, and H. Kabir, Comparative studies on some metrics for external validation of QSPR models, J. Chem. Inf. Model. 52 (2012), pp. 396–408. doi:10.1021/ci200520g.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058. doi:10.1021/ci300084j.
  • R.D. Dennington, T.A. Keith, and M.J. Millam, GaussView 5.0, Semichem Inc., Shawnee Mission, Wallingford, CT, 2008.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inf. 29 (2010), pp. 476–488. doi:10.1002/minf.201000061.
  • C.A. Nunes, M.P. Freitas, A.C.M. Pinheiro, and S.C. Bastos, Chemoface: A novel free user-friendly interface for chemometrics, J. Braz. Chem. Soc. 23 (2012), pp. 2003–2010. doi:10.1590/S0103-50532012005000073.
  • Molinspiration Cheminformatics free web services, Slovensky Grob, Slovakia. Available at https://www.molinspiration.com
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Delivery Rev. 46 (2001), pp. 3–26. doi:10.1016/S0169-409X(00)00129-0.
  • M.P. Freitas, MIA-QSAR modelling of anti-HIV-1 activities of some 2-amino-6- arylsulfonylbenzonitriles and their thio and sulfinyl congeners, Org. Biomol. Chem. 4 (2006), pp. 1154–1159. doi:10.1039/b516396j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.