225
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Prediction of acute toxicity to Daphnia magna and interspecific correlation: a global QSAR model and a Daphnia-minnow QTTR model

ORCID Icon, , , ORCID Icon &
Pages 583-600 | Received 16 May 2022, Accepted 04 Jul 2022, Published online: 21 Jul 2022

References

  • Commission of the European Communites, White paper: Strategy for a future chemicals policy, Brussels, 2001.
  • X. Wu, Q. Zhang, H. Wang, and J. Hu, Predicting carcinogenicity of organic compounds based on CPDB, Chemosphere 139 (2015), pp. 81–90. doi:10.1016/j.chemosphere.2015.05.056.
  • The European Parliament and the Council of the European Union, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Off. J. Eur. Union L396 (2006), pp. 1–849.
  • S. Kar and K. Roy, QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors, J. Hazard. Mater. 177 (2010), pp. 344–351. doi:10.1016/j.jhazmat.2009.12.038.
  • C.L. Russom, R.L. Breton, J.D. Walker, and S.P. Bradbury, An overview of the use of quantitative structure–activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments, Environ. Toxicol. Chem. 22 (2003), pp. 1810–1821. doi:10.1897/01-194.
  • M.H.I. Comber, J.D. Walker, C. Watts, and J. Hermens, Quantitative structure–activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments, Environ. Toxicol. Chem. 22 (2003), pp. 1822–1828. doi:10.1897/01-261.
  • OECD, Guidance Document on the Validation of (Quantitative) Structure–Activity Relationships [(Q)SAR] Models, Organisation for Economic Co-Operation and Development, Paris, France, 2007.
  • C. Barata, P. Alanon, S. Gutierrez-Alonso, M.C. Riva, C. Fernandez, and J.V. Tarazona, A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for environmental risk assessment of toxic effluents, Sci. Total Environ. 405 (2008), pp. 78–86. doi:10.1016/j.scitotenv.2008.06.028.
  • T.I. Netzeva, M. Pavan, and A.P. Worth, Review of (quantitative) structure–activity relationships for acute aquatic toxicity, QSAR Comb. Sci. 27 (2008), pp. 77–90. doi:10.1002/qsar.200710099.
  • P.C. von der Ohe, R. Kühne, R.-U. Ebert, R. Altenburger, M. Liess, and G. Schuurmann, Structural alerts-a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol. 18 (2005), pp. 536–555. doi:10.1021/tx0497954.
  • S.E. Belanger, J.L. Brill, J.M. Rawlings, and B.B. Price, Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions, Chemosphere 155 (2016), pp. 18–27. doi:10.1016/j.chemosphere.2016.04.029.
  • E. Perales, J.I. García, E. Pires, L. Aldea, L. Lomba, and B. Giner, Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna, Chemosphere 183 (2017), pp. 277–285. doi:10.1016/j.chemosphere.2017.05.107.
  • M.I. Hossain, B.B. Samir, M. El-Harbawi, A.N. Masri, M.I.A. Mutalib, G. Hefter, and C.Y. Yin, Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities, Chemosphere 85 (2011), pp. 990–994. doi:10.1016/j.chemosphere.2011.06.088.
  • E. Zvinavashe, T. Du, T. Griff, H.H.J. van den Berg, A.E.M.F. Soffers, J. Vervoort, A.J. Murk, and I.M.C.M. Rietjens, Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio, Chemosphere 75 (2009), pp. 1531–1538. doi:10.1016/j.chemosphere.2009.01.081.
  • I.V. Tetko, P. Sopasakis, P. Kunwar, S. Brandmaier, S. Novoratskyi, L. Charochkina, V. Prokopenko, and W.J.G.M. Peijnenburg, Prioritisation of polybrominated diphenyl ethers (PBDEs) by using the QSPR-THESAURUS web tool, Altern. Lab. Anim. 41 (2013), pp. 127–135. doi:10.1177/026119291304100112.
  • S. Cassani, S. Kovarich, E. Papa, P.P. Roy, M. Rahmberg, S. Nilsson, U. Sahlin, N. Jeliazkova, N. Kochev, O. Pukalov, I.V. Tetko, S. Brandmaier, M.K. Durjava, B. Kolar, W. Peijnenburg, and P. Gramatica, Evaluation of CADASTER QSAR models for the aquatic toxicity of (benzo)triazoles and prioritisation by consensus prediction, Altern. Lab. Anim. 41 (2013), pp. 49–64. doi:10.1177/026119291304100107.
  • S. Cassani, S. Kovarich, E. Papa, P.P. Roy, L. van der Wal, and P. Gramatica, Daphnia and fish toxicity of (benzo)triazoles: Validated QSAR models, and interspecies quantitative activity-activity modelling, J. Hazard. Mater. 258-259 (2013), pp. 50–60. doi:10.1016/j.jhazmat.2013.04.025.
  • M.V.R. Todeschini, R Provenzani, A Finizio, and P. Gramatica, Modeling and prediction by using WHIM descriptors in QSAR studies: Toxicity of heterogeneous chemicals on Daphnia magna, Chemosphere 32 (1996), pp. 1527–1545. doi:10.1016/0045-6535(96)00060-4.
  • J.C. Faucon, R. Bureau, J. Faisant, F. Briens, and S. Rault, Prediction of the Daphnia acute toxicity from heterogrnrous data, Chemosphere 44 (2001), pp. 407–422. doi:10.1016/S0045-6535(00)00301-5.
  • A.R. Katritzky, S.H. Slavov, I.S. Stoyanova-Slavova, I. Kahn, and M. Karelson, Quantitative structure–activity relationship (QSAR) modeling of EC 50 of aquatic toxicities for Daphnia magna, J. Toxicol. Environ. Health A 72 (2009), pp. 1181–1190. doi:10.1080/15287390903091863.
  • R. Kühne, R.-U. Ebert, P.C. von der Ohe, N. Ulrich, W. Brack, and G. Schüürmann, Read-across prediction of the acute toxicity of organic compounds toward the water flea Daphnia magna, Mol. Inf. 32 (2013), pp. 108–120.
  • M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I.V. Tetko, and R. Todeschini, Prediction of acute aquatic toxicity toward Daphnia magna by using the GA- k NN method, Altern. Lab. Anim. 42 (2014), pp. 31–41. doi:10.1177/026119291404200106.
  • S. Kar and K. Roy, First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals, Chemosphere 81 (2010), pp. 738–747. doi:10.1016/j.chemosphere.2010.07.019.
  • A. Furuhama, K. Hasunuma, and Y. Aoki, Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols, SAR QSAR Environ. Res. 26 (2015), pp. 301–323. doi:10.1080/1062936X.2015.1032347.
  • S. Önlü and M.T. Sacan, Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna, J. Hazard. Mater. 351 (2018), pp. 20–28. doi:10.1016/j.jhazmat.2018.02.046.
  • M.J. Frisch, G.W. Trucks, H.B. Schlege, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendel, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian09, Revision A.01, Gaussian Inc, Wallingford, CT, 2009.
  • Y. Zhao and D.G. Truhlar, Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions, J. Phys. Chem. A 108 (2004), pp. 6908–6918. doi:10.1021/jp048147q.
  • X. Wu, X. Sun, C. Zhang, C. Gong, and J. Hu, Micro-mechanism and rate constants for OH-initiated degradation of methomyl in atmosphere, Chemosphere 107 (2014), pp. 331–335. doi:10.1016/j.chemosphere.2013.12.082.
  • Talete S.R.L., Milano, Italy, 2013, Dragon 6.0; software available at http://www.talete.mi.it/.
  • US EPA, EPI Suite™ Version 4.11, Washington, DC, 2014 ; software available at https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.
  • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. A 102 (1998), pp. 3762–3772. doi:10.1021/jp980230o.
  • J. Li, B. Lei, H. Liu, S. Li, X. Yao, M. Liu, and P. Gramatica, QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling, J. Comput. Chem. 29 (2008), pp. 2636–2647. doi:10.1002/jcc.21002.
  • J.B. Ghasemi, A. Abdolmaleki, and N. Mandoumi, A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media, J. Hazard. Mater. 161 (2009), pp. 74–80. doi:10.1016/j.jhazmat.2008.03.089.
  • R. Todeschini, V. Consonni, and A. Maiocchi, The K correlation index: Theory development and its application in chemometrics, Chemom. Intell. Lab. Syst. 46 (1999), pp. 13–29. doi:10.1016/S0169-7439(98)00124-5.
  • E. Papa, F. Villa, and P. Gramatica, Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (Fathead minnow), J. Chem. Inf. Model. 45 (2005), pp. 1256–1266. doi:10.1021/ci050212l.
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52, Altern. Lab. Anim. 33 2005, pp. 155–173. doi:10.1177/026119290503300209
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375. doi:10.1289/ehp.5758.
  • H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491. doi:10.1016/0045-6535(92)90280-5.
  • K.L.E. Kaiser and S.P. Niculescu, Modeling acute toxicity of chemicals to Daphnia magna: A probabilistic neural network approtch, Environ. Toxicol. Chem. 20 (2001), pp. 420–431. doi:10.1002/etc.5620200225.
  • X. Wu, Q. Zhang, and J. Hu, QSAR study of the acute toxicity to fathead minnow based on a large dataset, SAR QSAR Environ. Res 27 (2016), pp. 147–164. doi:10.1080/1062936X.2015.1137353.
  • M. Vaal, J.T. van der Wal, J. Hermens, and J. Hoekstra, Pattern analysis of the variation in the sensitivity of aquatic species to toxicants, Chemosphere 35 (1997), pp. 1291–1309. doi:10.1016/S0045-6535(97)00166-5.
  • M. Vaal, J.T. van der Wal, J. Hoekstra, and J. Hermens, Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants, Chemosphere 35 (1997), pp. 1311–1327. doi:10.1016/S0045-6535(97)00167-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.