248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study for the binding affinity of thyroid hormone receptors based on machine learning algorithm

, , , , &
Pages 601-620 | Received 09 Jun 2022, Accepted 07 Jul 2022, Published online: 04 Aug 2022

References

  • A. Aranda and A. Pascual, Nuclear hormone receptors and gene expression, Physiol. Rev. 81 (2001), pp. 1269–1304.
  • R.C. Ribeiro, P.J. Kushner, and J.D. Baxter, The nuclear hormone receptor gene superfamily, Annu. Rev. Med. 46 (1995), pp. 443–453. doi:10.1146/annurev.med.46.1.443.
  • D.J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schütz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R.M. Evans, The nuclear receptor superfamily: The second decade, Cell 83 (1995), pp. 835–839. doi:10.1016/0092-8674(95)90199-X.
  • R.C. Ribeiro, J.W. Apriletti, R.L. Wagner, W. Feng, P.J. Kushner, S. Nilsson, T.S. Scanlan, B.L. West, R.J. Fletterick, and J.D. Baxter, X-ray crystallographic and functional studies of thyroid hormone receptor, J. Steroid Biochem. Molec. Biol. 65 (1995), pp. 133–141. doi:10.1016/S0960-0760(98)00029-6.
  • R.M. Evans, The steroid and thyroid hormone receptor superfamily, Science 240 (1988), pp. 889–895. doi:10.1126/science.3283939.
  • S.Y. Cheng, Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors, Rev. Endocr. Metab. Dis. 1 (2000), pp. 9–18. doi:10.1023/A:1010052101214.
  • C. Weinberger, C.C. Thompson, E.S. Ong, R. Lebo, D.J. Gruol, and R.M. Evans, The c-erb-A gene encodes a thyroid hormone receptor, Nature 324 (1998), pp. 641–646. doi:10.1038/324641a0.
  • P.M. Yen, Physiological and molecular basis of thyroid hormone action, Physiol. Rev. 81 (2001), pp. 1097–1142.
  • D. Forrest and B. Vennström, Functions of thyroid hormone receptors in mice, Thyroid 10 (2000), pp. 41–52. doi:10.1089/thy.2000.10.41.
  • K. Takeda, A. Sakurai, L.J. DeGroot, and S. Refetoff, Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene, J. Clin. Endocr. Metab. 74 (1992), pp. 49–55.
  • C.B. Harvey and G.R. Williams, Mechanism of thyroid hormone action, Thyroid 12 (2002), pp. 441–446. doi:10.1089/105072502760143791.
  • Y.F. Zhang, X.M. Ren, Y.Y. Li, X.F. Yao, C.H. Li, Z.F. Qin, and L.H. Guo, Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo, Environ. Pollut. 237 (2018), pp. 1072–1079. doi:10.1016/j.envpol.2017.11.027.
  • J. Freitas, P. Cano, C. Craig-Veit, M.L. Goodson, J.D. Furlow, and A.J. Murk, Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay, Toxicol. Vitro 25 (2011), pp. 257–266. doi:10.1016/j.tiv.2010.08.013.
  • M. Boas, U. Feldt-Rasmussen, and K.M. Main, Thyroid effects of endocrine disrupting chemicals, Mol. Cell. Endocrinol. 355 (2012), pp. 240–248. doi:10.1016/j.mce.2011.09.005.
  • D. Katarzynska, A. Hrabia, K. Kowalik, and A. Sechman, Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland, Environ. Toxicol. Phar. 39 (2015), pp. 496–503. doi:10.1016/j.etap.2015.01.016.
  • L. Birgersson, J. Jouve, E. Jonsson, N. Asker, F. Andreasson, O. Golovko, L. Ahrens, and J. Sturve, Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs, Ecotox. Environ. Safe. 222 (2021), pp. 112495. doi:10.1016/j.ecoenv.2021.112495.
  • M. Boas, U. Feldt-Rasmussen, N.E. Skakkebaek, and K.M. Main, Environmental chemicals and thyroid function, Eur. J. Endocrinol. 154 (2006), pp. 599–611.
  • M. Ren, L.H. Guo, Y. Gao, B.T. Zhang, and B. Wan, Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination, Toxicol. Appl. Pharm. 268 (2013), pp. 256–263. doi:10.1016/j.taap.2013.01.026.
  • D. Melzer, N. Rice, M.H. Depledge, W.E. Henley, and T.S. Galloway, Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey, Environ. Health Persp. 118 (2010), pp. 686–692. doi:10.1289/ehp.0901584.
  • K.G. Harley, A.R. Marks, J. Chevrier, A. Bradman, A. Sjodin, and B. Eskenazi, PBDE concentrations in women’s serum and fecundability, Environ. Health Persp. 118 (2010), pp. 699–704. doi:10.1289/ehp.0901450.
  • R. Judson, A. Richard, D.J. Dix, K. Houck, M. Martin, R. Kavlock, V. Dellarco, T. Henry, T. Holderman, P. Sayre, S. Tan, T. Carpenter, and E. Smith, The toxicity data landscape for environmental chemicals, Environ. Health Persp. 117 (2009), pp. 685–695. doi:10.1289/ehp.0800168.
  • M. Cronin, Chapter 10: Quantitative structure-activity relationships (Qsars) — Applications and methodology, in Challenges and Advances in Computational Chemistry and Physics, Springer Press, Heidelberg, 2010.
  • X. Bai, L. Yan, C. Ji, Q. Zhang, X. Dong, A. Chen, and M. Zhao, A combination of ternary classification models and reporter gene assays for the comprehensive thyroid hormone disruption profiles of 209 polychlorinated biphenyls, Chemosphere 210 (2018), pp. 312–319. doi:10.1016/j.chemosphere.2018.07.023.
  • F. Wang and J. Xing, Classification of thyroid hormone receptor agonists and antagonists using statistical learning approaches, Mol. Divers. 23 (2019), pp. 85–92.
  • A.P. Toropova, A.A. Toropov, and E. Benfenati, CORAL: Prediction of binding affinity and efficacy of thyroid hormone receptor ligands, Eur. J. Med. Chem. 101 (2015), pp. 452–461. doi:10.1016/j.ejmech.2015.07.012.
  • F. Wang, Y. Shi, and G. Le, Statistical methods and molecular docking for the prediction of thyroid hormone receptor subtype binding affinity and selectivity, Struct. Chem. 28 (2016), pp. 833–847.
  • F. Li, Q. Xie, X. Li, N. Li, P. Chi, J. Chen, Z. Wang, and C. Hao, Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: In vitro and in silico investigations, Environ. Health Persp. 118 (2010), pp. 602–606. doi:10.1289/ehp.0901457.
  • N.F. Valadares, M.S. Castilho, I. Polikarpov, and R.C. Garratt, 2D QSAR studies on thyroid hormone receptor ligands, Bioorg. Med. Chem. 15 (2007), pp. 4609–4617.
  • G. Azimi, S. Afiuni-Zadeh, and A. Karami, A QSAR study for modeling of thyroid receptors β1 selective ligands by application of adaptive neuro-fuzzy inference system and radial basis function, J. Chemom. 26 (2012), pp. 135–142. doi:10.1002/cem.2421.
  • Y. Wang, Y. Li, J. Ding, Y. Wang, and Y. Chang, Prediction of binding affinity for estrogen receptor alpha modulators using statistical learning approaches, Mol. Divers. 12 (2008), pp. 93–102.
  • K.A. Marill, Advanced statistics: Linear regression, part II: Multiple linear regression, Acad. Emerg. Med. 11 (2004), pp. 94–102.
  • A.A. Paltseva, M. Deeb, E. Di Iorio, L. Circelli, Z. Cheng, and C. Colombo, Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy, Sci. Total Environ. 809 (2022), pp. 151107. doi:10.1016/j.scitotenv.2021.151107.
  • J. Xu, W. Yang, Z. Bai, R. Zhang, J. Zheng, M. Wang, and T. Zhu, Modeling spatial variation of gaseous air pollutants and particulate matters in a Metropolitan area using mobile monitoring data, Environ. Res. 210 (2022), pp. 112858.
  • G. Ding, J. Chen, X. Qiao, L. Huang, J. Lin, and X. Chen, Quantitative relationships between molecular structures, environmental temperatures and solid vapor pressures of PCDD/Fs, Chemosphere 62 (2006), pp. 1057–1063. doi:10.1016/j.chemosphere.2005.04.110.
  • S. Wold, M. Sjostrom, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemom. Intell. Lab. 58 (2001), pp. 109–130. doi:10.1016/S0169-7439(01)00155-1.
  • S. Wold, A. Ruhe, H. Wold, and W.J. Dunn III, The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses, SIAM J. Sci. Stat. Comput. 5 (1984), pp. 735–743. doi:10.1137/0905052.
  • H.X. Liu, C.X. Xue, R.S. Zhang, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1979–1986. doi:10.1021/ci049891a.
  • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • V. Cherkassky, The nature of statistical learning theory, IEEE Trans. Neural. Net. 8 (1997), pp. 1564. doi:10.1109/TNN.1997.641482.
  • A.J. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004), pp. 199–222. doi:10.1023/B:STCO.0000035301.49549.88.
  • W. Tang, Y. Li, Y. Yu, Z. Wang, T. Xu, J. Chen, J. Lin, and X. Li, Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms, Chemosphere 253 (2020), pp. 126666. doi:10.1016/j.chemosphere.2020.126666.
  • E. Scornet, Random forests and kernel methods, IEEE Trans. Inform. Theory 62 (2016), pp. 1485–1500.
  • P.G. Polishchuk, E.N. Muratov, A.G. Artemenko, O.G. Kolumbin, N.N. Muratov, and V.E. Kuz’min, Application of random forest approach to QSAR prediction of aquatic toxicity, J. Chem. Inf. Model. 49 (2009), pp. 2481–2488. doi:10.1021/ci900203n.
  • N. Chen, J. Chen, B. Yao, and Z. Li, QSAR study on antioxidant tripeptides and the antioxidant activity of the designed tripeptides in free radical systems, Molecules 23 (2018), pp. 1407. doi:10.3390/molecules23061407.
  • N. Chirico,and and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058. doi:10.1021/ci300084j.
  • P. Gramatica and A. Sangion, A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology, J. Chem. Inf. Model. 56 (2016), pp. 1127–1131. doi:10.1021/acs.jcim.6b00088.
  • H. Liu, X. Yang, and R. Lu, Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin, Chemosphere 156 (2016), pp. 1–7. doi:10.1016/j.chemosphere.2016.04.077.
  • E.M. de Haas, T. Eikelboom, and T. Bouwman, Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR, SAR QSAR Environ. Res. 22 (2011), pp. 545–559.
  • T.I. Netzeva, A. Worth, T. Aldenberg, R. Benigni, M.T. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D. Roberts, T. Schultz, D.W. Stanton, J.J. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships, the report and recommendations of ECVAM workshop 52. Altern. Lab. Anim. 33(2005), pp. 155–173.
  • M. Hamadache, O. Benkortbi, S. Hanini, A. Amrane, L. Khaouane, and C. Si Moussa, A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction, J. Hazard. Mater. 303 (2016), pp. 28–40. doi:10.1016/j.jhazmat.2015.09.021.
  • D. Jiang, T. Lei, Z. Wang, C. Shen, D. Cao, and T. Hou, ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning, J. Cheminf. 12 (2020), pp. 16. doi:10.1186/s13321-020-00421-y.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • N. Puri, O. Prakash, R. Manoharlal, M. Sharma, I. Ghosh, and R. Prasad, Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans, Eur. J. Med. Chem. 45 (2010), pp. 4813–4826. doi:10.1016/j.ejmech.2010.07.050.
  • G.J. Lavado, D. Baderna, D. Gadaleta, M. Ultre, K. Roy, and E. Benfenati, Ecotoxicological QSAR modeling of the acute toxicity of organic compounds to the freshwater crustacean Thamnocephalus platyurus, Chemosphere 280 (2021), pp. 130652. doi:10.1016/j.chemosphere.2021.130652.
  • J. He, T. Peng, X. Yang, and H. Liu, Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor, Ecotox. Environ. Safe. 148 (2018), pp. 211–219. doi:10.1016/j.ecoenv.2017.10.023.
  • V. Zare-Shahabadi, M. Lotfizadeh, A.R.A. Gandomani, and M.M. Papari, Determination of boiling points of azeotropic mixtures using quantitative structure–property relationship (QSPR) strategy, J. Mol. Liq. 188 (2013), pp. 222–229. doi:10.1016/j.molliq.2013.09.037.
  • M.T. Ibrahim, A. Uzairu, S. Uba, and G.A. Shallangwa, Computational modeling of novel quinazoline derivatives as potent epidermal growth factor receptor inhibitors, Heliyon 6 (2020), pp. e03289. doi:10.1016/j.heliyon.2020.e03289.
  • R.K. Mukherjee, V. Kumar, and K. Roy, Ecotoxicological QSTR and QSTTR modeling for the prediction of acute oral toxicity of pesticides against multiple avian species, Environ. Sci. Technol. 56 (2022), pp. 335–348. doi:10.1021/acs.est.1c05732.
  • E. Papa, A. Sangion, J.A. Arnot, and P. Gramatica, Development of human biotransformation QSARs and application for PBT assessment refinement, Food Chem. Toxicol. 112 (2018), pp. 535–543. doi:10.1016/j.fct.2017.04.016.
  • -F.-F. Wang, W. Yang, Y.-H. Shi, and G.-W. Le, Probing the structural requirements for thyroid hormone receptor inhibitory activity of sulfonylnitrophenylthiazoles (SNPTs) using 2D-QSAR and 3D-QSAR approaches, Med. Chem. Res. 26 (2016), pp. 344–360.
  • F.F. Wang, W. Yang, Y.H. Shi, and G.W. Le, In silico study on beta-aminoketone derivatives as thyroid hormone receptor inhibitors: A combined 3D-QSAR and molecular docking study, J. Biomol. Struct. Dyn. 34 (2016), pp. 2619–2631.
  • H. Liu and P. Gramatica, QSAR study of selective ligands for the thyroid hormone receptor beta, Bioorg. Med. Chem. 15 (2007), pp. 5251–5261.
  • J. Du, J. Qin, H. Liu, and X. Yao, 3D-QSAR and molecular docking studies of selective agonists for the thyroid hormone receptor β, J. Mol. Graphics Modell. 27 (2008), pp. 95–104. doi:10.1016/j.jmgm.2008.03.003.
  • Y. Ren, H. Liu, S. Li, X. Yao, and M. Liu, Prediction of binding affinities to beta1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression, Bioorg. Med. Chem. Lett. 17 (2007), pp. 2474–2482. doi:10.1016/j.bmcl.2007.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.