207
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Monte Carlo technique to study the adsorption affinity of azo dyes by applying new statistical criteria of the predictive potential

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 621-630 | Received 17 Jun 2022, Accepted 18 Jul 2022, Published online: 04 Aug 2022

References

  • L. Nambela, L.V. Haule, and Q. Mgani, A review on source, chemistry, green synthesis and application of textile colorants, J. Clean. Prod. 246 (2020), pp. 119036. doi:10.1016/j.jclepro.2019.119036.
  • S. Benkhaya, S. M’rabet, and A. El Harfi, Classifications, properties, recent synthesis and applications of azo dyes, Heliyon 6 (2020), pp. e03271. doi:10.1016/j.heliyon.2020.e03271.
  • H.S. Freeman, Aromatic amines: Use in azo dye chemistry, Front. Biosci. (Landmark Ed.) 18 (2013), pp. 145–164. doi:10.2741/4093
  • F. Dehghanian, M. Kay, and D. Kahrizi, A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye’s binding affinity, Gene 569 (2015), pp. 233–238. doi:10.1016/j.gene.2015.05.063.
  • M. Dolatabadi, M. Mehrabpour, M. Esfandyari, H. Alidadi, and M. Davoudi, Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS, Chemom. Intell. Lab. Syst. 181 (2018), pp. 72–78. doi:10.1016/j.chemolab.2018.07.012.
  • N.D. Lourenço, J.M. Novais, and H.M. Pinheiro, Analysis of secondary metabolite fate during anaerobic‐aerobic azo dye biodegradation in a sequential batch reactor, Environ. Technol. 24 (2003), pp. 679–686. doi:10.1080/09593330309385603.
  • D. Beiknejad, M.J. Chaichi, and M.H. Fatemi, Prediction of ozonolytic decolorization half-lives of azo dyes in a continuous-flow system using QSPR, Dyes Pigm. 185 (2021), pp. 108915. doi:10.1016/j.dyepig.2020.108915.
  • P. Kumar and A. Kumar, In silico enhancement of azo dye adsorption affinity for cellulose fibre through mechanistic interpretation under guidance of QSPR models using Monte Carlo method with index of ideality correlation, SAR QSAR Environ. Res. 31 (2020), pp. 697–715. doi:10.1080/1062936X.2020.1806105.
  • K.L. Bhat, A. Garg, M. Trachtman, and C.W. Bock, Metabolites of monomethoxy-4-aminoazobenzene dyes: A computational study, Dyes Pigm 50 (2001), pp. 133–150. doi:10.1016/S0143-7208(01)00032-8.
  • F. Luan, X. Xu, H. Liu, and M.N.D.S. Cordeiro, Review of quantitative structure-activity/property relationship studies of dyes: Recent advances and perspectives, Color. Technol. 129 (2013), pp. 173–186. doi:10.1111/cote.12027.
  • Y. Okada and Z. Morita, Quantitative structure–property relationship modelling for photoreduction-fast azo dyes on a nylon substrate: A methodology for thermochemical analysis of the photocleavage of azo dyes using the RM1 semi-empirical molecular orbital method, Color. Technol. 133 (2017), pp. 98–115. doi:10.1111/cote.12265.
  • J.H. Churchley, A.J. Greaves, M.G. Hutchings, D.A.S. Phillips, and J.A. Taylor, A chemometric approach to understanding the bioelimination of anionic, water-soluble dyes by a biomass—Part 3: Direct dyes, Color. Technol. 116 (2000), pp. 279–284. doi:10.1111/j.1478-4408.2000.tb00047.x.
  • S. Timofei, W. Schmidt, L. Kurunczi, and Z. Simon, A review of QSAR for dye affinity for cellulose fibres, Dyes Pigm. 47 (2000), pp. 5–16. doi:10.1016/S0143-7208(00)00058-9.
  • A.P. Toropova and A.A. Toropov, CORAL: Monte Carlo method to predict endpoints for medical chemistry, Mini-Rev. Med. Chem. 18 (2018), pp. 382–391. doi:10.2174/1389557517666170927154931.
  • A.A. Toropov and A.P. Toropova, QSAR as a random event: Criteria of predictive potential for a chance model, Struct. Chem. 30 (2019), pp. 1677–1683. doi:10.1007/s11224-019-01361-6.
  • A.P. Toropova, A.A. Toropov, E.L. Viganò, E. Colombo, A. Roncaglioni, and E. Benfenati, Carcinogenicity prediction using the index of ideality of correlation, SAR QSAR Environ. Res. 33 (2022), pp. 419–428. doi:10.1080/1062936X.2022.2076736.
  • A.P. Toropova and A.A. Toropov, The index of ideality of correlation: A criterion of predictability of QSAR models for skin permeability? Sci. Total Environ. 586 (2017), pp. 466–472. doi:10.1016/j.scitotenv.2017.01.198.
  • A.A. Toropov and A.P. Toropova, Correlation intensity index: Building up models for mutagenicity of silver nanoparticles, Sci. Total Environ. 737 (2020), pp. 139720. doi:10.1016/j.scitotenv.2020.139720.
  • P. Kumar and A. Kumar, Correlation Intensity Index (CII) as a benchmark of predictive potential: Construction of quantitative structure activity relationship models for anti-influenza single-stranded DNA aptamers using Monte Carlo optimization, J. Mol. Struct. 1246 (2021), pp. 131205. doi:10.1016/j.molstruc.2021.131205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.