254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An attention mechanism-based LSTM network for cancer kinase activity prediction

, , , , ORCID Icon &
Pages 631-647 | Received 18 May 2022, Accepted 30 Jul 2022, Published online: 05 Sep 2022

References

  • K. Stoletov, P.H. Beatty, and J.D. Lewis, Novel therapeutic targets for cancer metastasis, Expert Rev. Anticancer Ther. 20 (2020), pp. 97–109. doi:10.1080/14737140.2020.1718496.
  • L. Zhong, Y. Li, L. Xiong, W. Wenjing, W. Ming, Y. Ting, Y. Wei, T. Chenyu, M. Zhuang, W. Tianqi Wang, and Y. Shengyong, Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives, Sig. Transduct. Target. Ther. 6 (2021), pp. 201.
  • K.S. Bhullar, N.O. Lagarón, E.M. McGowan, I. Parmar, A. Jha, B.P. Hubbard, and H.P.V. Rupasinghe, Kinase-targeted cancer therapies: Progress, challenges and future directions, Mol. Cancer 17 (2018), pp. 48. doi:10.1186/s12943-018-0804-2.
  • J.S. Yu and W. Cui, Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination, Development 143 (2016), pp. 3050–3060. doi:10.1242/dev.137075.
  • P. Cohen, D. Cross, and P.A. Jänne, Kinase drug discovery 20 years after imatinib: Progress and future directions, Nat. Rev. Drug Discov. 20 (2021), pp. 551–569. doi:10.1038/s41573-021-00195-4.
  • S. Knapp, New opportunities for kinase drug repurposing and target discovery, Br. J. Cancer 118 (2018), pp. 936–937. doi:10.1038/s41416-018-0045-6.
  • J. Cicenas and A. Račienė, Anti-cancer drugs targeting protein kinases approved by FDA in 2020, Cancers 13 (2021), pp. 947. doi:10.3390/cancers13050947.
  • S. Zhang and D. Yu, Targeting Src family kinases in anti-cancer therapies: Turning promise into triumph, Trends Pharmacol. Sci. 33 (2012), pp. 122–128. doi:10.1016/j.tips.2011.11.002.
  • A.F. Wilks, The JAK kinases: Not just another kinase drug discovery target, Semin. Cell Dev. Biol. 19 (2008), pp. 319–328.
  • C. Zhou, L. Zhu, J. Ji, F. Ding, C. Wang, Q. Cai, Y. Yu, Z. Zhu, and J. Zhang, EGFR high expression, but not KRAS status, predicts sensitivity of pancreatic cancer cells to Nimotuzumab treatment in vivo, Curr. Cancer Drug Targets 17 (2017), pp. 89–97. doi:10.2174/1568009616666161013101657.
  • S. Nukaga, H. Yasuda, K. Tsuchihara, J. Hamamoto, K. Masuzawa, I. Kawada, K. Naoki, S. Matsumoto, S. Mimaki, S. Ikemura, K. Goto, T. Betsuyaku, and K. Soejima, Amplification of egfr wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective egfr tyrosine kinase inhibitors, Cancer Res. 77 (2017), pp. 2078–2089. doi:10.1158/0008-5472.CAN-16-2359.
  • C. Zhu, Y. Wei, and X. Wei, AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications, Mol. Cancer 18 (2019), pp. 153. doi:10.1186/s12943-019-1090-3.
  • S.L. Greig, Osimertinib: First global approval, Drugs 76 (2016), pp. 263–273. doi:10.1007/s40265-015-0533-4.
  • M. Sattler, M.M. Reddy, R. Hasina, T. Gangadhar, and R. Salgia, The role of the c-Met pathway in lung cancer and the potential for targeted therapy, Ther. Adv. Med. Oncol. 3 (2011), pp. 171–184. doi:10.1177/1758834011408636.
  • R. Dienstmann and J. Tabernero, BRAF as a target for cancer therapy, Anticancer Agents Med. Chem. 11 (2011), pp. 285–295. doi:10.2174/187152011795347469.
  • R.K. Murthy, S. Loi, A. Okines, E. Paplomata, E. Hamilton, S.A. Hurvitz, N.U. Lin, V. Borges, V. Abramson, C. Anders, P.L. Bedard, M. Oliveira, E. Jakobsen, T. Bachelot, S.S. Shachar, V. Müller, S. Braga, F.P. Duhoux, R. Greil, D. Cameron, L.A. Carey, G. Curigliano, K. Gelmon, G. Hortobagyi, I. Krop, S. Loibl, M. Pegram, D. Slamon, M.C. Palanca-Wessels, L. Walker, W. Feng, and E.P. Winer, Tucatinib, Trastuzumab, and Capecitabine for HER2-positive metastatic breast cancer, N. Engl. J. Med. 382 (2020), pp. 597–609. doi:10.1056/NEJMoa1914609.
  • H.S. Rugo, S.A. Im, F. Cardoso, J. Cortés, G. Curigliano, A. Musolino, M.D. Pegram, G.S. Wright, C. Saura, S. Escrivá-de-Romaní, M. De Laurentiis, C. Levy, U. Brown-Glaberman, J.M. Ferrero, M. de Boer, S.B. Kim, K. Petráková, D.A. Yardley, O. Freedman, E.H. Jakobsen, B. Kaufman, R. Yerushalmi, P.A. Fasching, J.L. Nordstrom, E. Bonvini, S. Koenig, S. Edlich, S. Hong, E.P. Rock, and W.J. Gradishar, Efficacy of Margetuximab vs Trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial, JAMA Oncol. 7 (2021), pp. 573–584. doi:10.1001/jamaoncol.2020.7932.
  • H. Tanaka, K. Taima, T. Makiguchi, J. Nakagawa, T. Niioka, and S. Tasaka, Activity and bioavailability of tepotinib for leptomeningeal metastasis of NSCLC with MET exon 14 skipping mutation, Cancer Commun. (Lond.) 41 (2021), pp. 83–87. doi:10.1002/cac2.12124.
  • M.R. Burgess, B.J. Skaggs, N.P. Shah, F.Y. Lee, and C.L. Sawyers, Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance, Proc. Natl. Acad. Sci. USA. 102 (2005), pp. 3395–3400. doi:10.1073/pnas.0409770102.
  • J.A. Hardy, Fighting kinase drug resistance with caspase activators, Cell. Chem. Biol. 25 (2018), pp. 927–928. doi:10.1016/j.chembiol.2018.08.001.
  • A. Aliper, S. Plis, A. Artemov, A. Ulloa, P. Mamoshina, and A. Zhavoronkov, Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data, Mol. Pharm. 13 (2016), pp. 2524–2530. doi:10.1021/acs.molpharmaceut.6b00248.
  • S. Rodriguez, C. Hug, P. Todorov, N. Moret, S.A. Boswell, K. Evans, G. Zhou, N.T. Johnson, B.T. Hyman, P.K. Sorger, M.W. Albers, and A. Sokolov, Machine learning identifies candidates for drug repurposing in Alzheimer’s disease, Nat. Commun. 12 (2021), pp. 1033. doi:10.1038/s41467-021-21330-0.
  • J. Shim, Z.Y. Hong, I. Sohn, and H. Changha, Prediction of drug–target binding affinity using similarity-based convolutional neural network, Sci. Rep. 11 (2021), pp. 4416. doi:10.1038/s41598-021-83679-y.
  • G. Adam, L. Rampášek, Z. Safikhani, P. Smirnov, B. Haibe-Kains, and A. Goldenberg, Machine learning approaches to drug response prediction: Challenges and recent progress, Npj Precis. Onc. 4 (2020), pp. 19. doi:10.1038/s41698-020-0122-1.
  • H. Singh, S. Singh, D. Singla, S.M. Agarwal, and G.P. Raghava, QSAR based model for discriminating EGFR inhibitors and non-inhibitors using random forest, Biol. Direct. 10 (2015), pp. 10. doi:10.1186/s13062-015-0046-9.
  • R. Saini, S. Fatima, and S.M. Agarwal, TMLRpred: A machine learning classification model to distinguish reversible EGFR double mutant inhibitors, Chem. Biol. Drug Des. 96 (2020), pp. 921–930. doi:10.1111/cbdd.13697.
  • H. Briem and J. Günther, Classifying “kinase inhibitor-likeness” by using machine-learning methods, Chem. Bio. Chem. 6 (2005), pp. 558–566. doi:10.1002/cbic.200400109.
  • S. Vittorio, R. Gitto, I. Adornato, E. Russo, and L. De Luca, In silico strategy for targeting the mTOR kinase at rapamycin binding site by small molecules, Molecules 26 (2021), pp. 1103. doi:10.3390/molecules26041103.
  • Y. Zhang, T.J. Zhang, S. Tu, Z.H. Zhang, and F.H. Meng, Identification of novel Src inhibitors: Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations, Molecules 25 (2020), pp. 4094. doi:10.3390/molecules25184094.
  • G. Gómez-Jiménez, K. Gonzalez-Ponce, D.J. Castillo-Pazos, A. Madariaga-Mazon, J. Barroso-Flores, F. Cortes-Guzman, and K. Martinez-Mayorga, The OECD principles for (Q)SAR models in the context of knowledge discovery in databases (KDD), Adv. Protein Chem. Struct. Biol. 113 (2018), pp. 85–117.
  • A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, and J.P. Overington, ChEMBL: A large-scale bioactivity database for drug discovery, Nucleic Acids Res. 40 (2012), pp. D1100–D1107. doi:10.1093/nar/gkr777.
  • Danishuddin and A.U. Khan, Descriptors and their selection methods in QSAR analysis: Paradigm for drug design, Drug Discov. Today 21 (2016), pp. 1291–1302. doi:10.1016/j.drudis.2016.06.013.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • S. Stewart, M.A. Ivy, and E.V. Anslyn, The use of principal component analysis and discriminant analysis in differential sensing routines, Chem. Soc. Rev. 43 (2014), pp. 70–84. doi:10.1039/C3CS60183H.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicabilty domain estimation by projection of the training set descriptor space: A review, Altern. Lab. Anim. 33 (2005), pp. 445–459. doi:10.1177/026119290503300508.
  • M. Toplak, R. Močnik, M. Polajnar, Z. Bosnić, L. Carlsson, C. Hasselgren, J. Demšar, S. Boyer, B. Zupan, and J. Stålring, Assessment of machine learning reliability methods for quantifying the applicability domain of QSAR regression models, J. Chem. Inf. Model. 54 (2014), pp. 431–441. doi:10.1021/ci4006595.
  • L.B. Akella and D. De Caprio, Cheminformatics approaches to analyze diversity in compound screening libraries, Curr. Opin. Chem. Biol. 14 (2010), pp. 325–330. doi:10.1016/j.cbpa.2010.03.017.
  • J.J. Perez, Managing molecular diversity, Chem. Soc. Rev. 34 (2005), pp. 143–152. doi:10.1039/b209064n.
  • X.G. Yang, D. Chen, M. Wang, Y. Xue, and Y.Z. Chen, Prediction of antibacterial compounds by machine learning approaches, J. Comput. Chem. 30 (2009), pp. 1202–1211. doi:10.1002/jcc.21148.
  • J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61 (2015), pp. 85–117. doi:10.1016/j.neunet.2014.09.003.
  • W. Wang, X. Yang, C. Yang, X. Guo, X. Zhang, and C. Wu, Dependency-based long short term memory network for drug-drug interaction extraction, BMC Bioinf. 18 (2017), pp. 578. doi:10.1186/s12859-017-1962-8.
  • A. Hernández and J.M. Amigó, Attention mechanisms and their applications to complex systems, Entropy (Basel) 23 (2021), pp. 283. doi:10.3390/e23030283.
  • D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv 0473 (2014), pp. 1409.
  • M. Grandini, E. Bagli, and G. Visani, Metrics for multi-class classification: An overview, arXiv, 2020, 2008.0575 6.
  • K.H. Tilaki, Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation casp, J. Intern. Med. 4 (2013), pp. 627–635.
  • J.N. Mandrekar, Receiver operating characteristic curve in diagnostic test assessment, J. Thorac. Oncol. 5 (2010), pp. 1315–1316. doi:10.1097/JTO.0b013e3181ec173d.
  • F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni, and R. Todeschini, Comparison of different approaches to define the applicability domain of QSAR models, Molecules 17 (2012), pp. 791–810. doi:10.3390/molecules17054791.
  • C. Zuo, J. Qian, S. Feng, W. Yin, Y. Li, P. Fan, J. Han, K. Qian, and Q. Chen, Deep learning in optical metrology: A review, Light Sci. Appl. 11 (2022), pp. 39. doi:10.1038/s41377-022-00714-x.
  • J. Shrestha, S.W. Kim, S.B. Kim, Y.S. Oh, S.H. Ki, T. Lee, S.B. Kim, T. Park, D.J. Baek, and E.Y. Park, Determining the anticancer activity of sphingosine kinase inhibitors containing heteroatoms in their tail structure, Pharmaceutics 14 (2022), pp. 157. doi:10.3390/pharmaceutics14010157.
  • Y.H. Huang, S.W. Huang, Y.F. Hsu, G. Ou, W.J. Huang, and M.J. Hsu, The effects of a novel aliphatic-chain hydroxamate derivative WMJ-S-001 in HCT116 colorectal cancer cell death, Sci. Rep. 5 (2015), pp. 15900. doi:10.1038/srep15900.
  • G. Chen, Q. Weng, L. Fu, Z. Wang, P. Yu, Z. Liu, X. Li, H. Zhang, and G. Liang, Synthesis and biological evaluation of novel oxindole-based RTK inhibitors as anti-cancer agents, Bioorg. Med. Chem. 22 (2014), pp. 6953–6960. doi:10.1016/j.bmc.2014.10.017.
  • Y. Zhu, S. Alqahtani, and X. Hu, Aromatic rings as molecular determinants for the molecular recognition of protein kinase inhibitors, Molecules 26 (2021), pp. 1776. doi:10.3390/molecules26061776.
  • N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, and S.B. Jonnalagadda, A review on recent advances in nitrogen-containing molecules and their biological applications, Molecules 25 (2020), pp. 1909. doi:10.3390/molecules25081909.
  • M.N. Peerzada, E. Hamel, R. Bai, C.T. Supuran, and A. Azam, Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development, Pharmacol. Ther. 225 (2021), pp. 107860. doi:10.1016/j.pharmthera.2021.107860.
  • H. Czapinska, M. Winiewska-Szajewska, A. Szymaniec-Rutkowska, A. Piasecka, M. Bochtler, and J. Poznański, Halogen atoms in the protein-ligand system. structural and thermodynamic studies of the binding of bromobenzotriazoles by the catalytic subunit of human protein kinase CK2, J. Phys. Chem. B 125 (2021), pp. 2491–2503. doi:10.1021/acs.jpcb.0c10264.
  • P. Armutlu, M.E. Ozdemir, F. Uney-Yuksektepe, I. Halil Kavakli, and M. Turkay, Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method, BMC Bioinf. 9 (2008), pp. 411. doi:10.1186/1471-2105-9-411.
  • P.S. Karnachi and F.K. Brown, Practical approaches to efficient screening: Information-rich screening protocol, J. Biomol. Screen. 9 (2004), pp. 678–686. doi:10.1177/1087057104269570.
  • T. Varin, H. Gubler, C.N. Parker, J.H. Zhang, P. Raman, P. Ertl, and A. Schuffenhauer, Compound set enrichment: A novel approach to analysis of primary HTS data, J. Chem. Inf. Model. 50 (2010), pp. 2067–2078. doi:10.1021/ci100203e.
  • A.Y.Y. Chiu and M.Y.C. Pang, Assessment of psychometric properties of various balance assessment tools in persons with cervical spondylotic myelopathy, J. Orthop. Sports Phys. Ther. 47 (2017), pp. 673–682. doi:10.2519/jospt.2017.7283.
  • L. Zhang, D. Fourches, A. Sedykh, H. Zhu, A. Golbraikh, S. Ekins, J. Clark, M.C. Connelly, M. Sigal, D. Hodges, A. Guiguemde, R.K. Guy, and A. Tropsha, Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening, J. Chem. Inf. Model. 53 (2013), pp. 475–492. doi:10.1021/ci300421n.
  • R. Carlos, S. González, and A.M. Yaser, Mismatched training and test distributions can outperform matched ones, Neural Comput. 27 (2015), pp. 365–387. doi:10.1162/NECO_a_00697.
  • S.K. Chakravarti and S.R.M. Alla, Descriptor free QSAR modeling using deep learning with long short-term memory neural networks, Front. Artif. Intell. 2 (2019), pp. 17. doi:10.3389/frai.2019.00017.
  • V. Dey, R. Machiraju, and X. Ning, Improving compound activity classification via deep transfer and representation learning, ACS Omega 7 (2022), pp. 9465–9483.
  • C. Chen, T. Wu, Z. Guo, and J. Cheng, Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction, Proteins 89 (2021), pp. 697–707. doi:10.1002/prot.26052.
  • S. Park, Y. Koh, H. Jeon, H. Kim, Y. Yeo, and J. Kang, Enhancing the interpretability of transcription factor binding site prediction using attention mechanism, Sci. Rep. 7 (2020), pp. 13413. doi:10.1038/s41598-020-70218-4.
  • Z. Cheng, C. Yan, F. Wu, and J. Wang, Drug-target interaction prediction using multi-head self-attention and graph attention network. IEEE/ACM Trans Comput. Biol. Bioinf. 6 (2021). doi:10.1109/TCBB.2021.3077905.
  • P. Martins, J. Jesus, S. Santos, L.R. Raposo, C. Roma-Rodrigues, P.V. Baptista, and A.R. Fernandes, Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box, Molecules 20 (2015), pp. 16852–16891. doi:10.3390/molecules200916852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.