150
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations

ORCID Icon, , , , &
Pages 805-831 | Received 08 Sep 2022, Accepted 20 Oct 2022, Published online: 02 Nov 2022

References

  • B. Poon, K. Grovit-Ferbas, S.A. Stewart, and I.S.Y. Chen, Cell cycle arrest by vpr in HIV-1 virions and insensitivity to antiretroviral agents, Science 281 (1998), pp. 266–269. doi:10.1126/science.281.5374.266.
  • M.A. Navia, P.M.D. Fitzgerald, B.M. McKeever, C.-T. Leu, J.C. Heimbach, W.K. Herber, I.S. Sigal, P.L. Darke, and J.P. Springer, Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature 337 (1989), pp. 615–620. doi:10.1038/337615a0.
  • A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, and D.D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), pp. 1582–1586. doi:10.1126/science.271.5255.1582.
  • E.O. Freed, HIV-1 gag proteins: Diverse functions in the virus life cycle, Virology 251 (1998), pp. 1–15. doi:10.1006/viro.1998.9398.
  • A. Wlodawer and J. Vondrasek, Inhibitors of HIV-1 PROTEASE: A major success of structure-assisted drug design, Annu. Rev. Bioph. Biom. 27 (1998), pp. 249–284. doi:10.1146/annurev.biophys.27.1.249.
  • R. Lapatto, T. Blundell, A. Hemmings, J. Overington, A. Wilderspin, S. Wood, J.R. Merson, P.J. Whittle, D.E. Danley, K.F. Geoghegan, S.J. Hawrylik, S.E. Lee, K.G. Scheld, and P.M. Hobart, X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes, Nature 342 (1989), pp. 299–302. doi:10.1038/342299a0.
  • R. Ishima, D.I. Freedberg, Y.-X. Wang, J.M. Louis, and D.A. Torchia, Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function, Structure 7 (1999), pp. S1–S12. doi:10.1016/S0969-2126(99)80172-5.
  • W.R.P. Scott and C.A. Schiffer, Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance, Structure 8 (2000), pp. 1259–1265. doi:10.1016/S0969-2126(00)00537-2.
  • A. Carr, K. Samaras, D.J. Chisholm, and D.A. Cooper, Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance, Lancet 351 (1998), pp. 1881–1883. doi:10.1016/S0140-6736(98)03391-1.
  • D.A. Judd, J.H. Nettles, N. Nevins, J.P. Snyder, D.C. Liotta, J. Tang, J. Ermolieff, R.F. Schinazi, and C.L. Hill, Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition, J. Am. Chem. Soc. 123 (2001), pp. 886–897. doi:10.1021/ja001809e.
  • A.Y. Kovalevsky, F. Liu, S. Leshchenko, A.K. Ghosh, J.M. Louis, R.W. Harrison, and I.T. Weber, Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114, J. Mol. Biol. 363 (2006), pp. 161–173. doi:10.1016/j.jmb.2006.08.007.
  • A.K. Ghosh, Z.L. Dawson, and H. Mitsuya, Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV, Bioorg. Med. Chem. 15 (2007), pp. 7576–7580. doi:10.1016/j.bmc.2007.09.010.
  • A.Y. Kovalevsky, J.M. Louis, A. Aniana, A.K. Ghosh, and I.T. Weber, Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease, J. Mol. Biol. 384 (2008), pp. 178–192. doi:10.1016/j.jmb.2008.09.031.
  • G.M. Lee and C.S. Craik, Trapping moving targets with small molecules, Science 324 (2009), pp. 213–215. doi:10.1126/science.1169378.
  • G.C. Williams and P.J. Sinko, Oral absorption of the HIV protease inhibitors: A current update, Adv. Drug Deliver. Rev. 39 (1999), pp. 211–238. doi:10.1016/S0169-409X(99)00027-7.
  • C.-H. Shen, Y.-F. Wang, A.Y. Kovalevsky, R.W. Harrison, and I.T. Weber, Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters, FEBS J. 277 (2010), pp. 3699–3714. doi:10.1111/j.1742-4658.2010.07771.x.
  • D.L.N.G. Surleraux, A. Tahri, W.G. Verschueren, G.M.E. Pille, H.A. De Kock, T.H.M. Jonckers, A. Peeters, S. De Meyer, H. Azijn, R. Pauwels, M.-P. de Bethune, N.M. King, M. Prabu-Jeyabalan, C.A. Schiffer, and P.B.T.P. Wigerinck, Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor, J. Med. Chem. 48 (2005), pp. 1813–1822. doi:10.1021/jm049560p.
  • H. Heaslet, V. Kutilek, G.M. Morris, Y.-C. Lin, J.H. Elder, B.E. Torbett, and C.D. Stout, Structural insights into the mechanisms of drug resistance in HIV-1 protease NL4-3, J. Mol. Biol. 356 (2006), pp. 967–981. doi:10.1016/j.jmb.2005.11.094.
  • M. Kožíšek, J. Bray, P. Řezáčová, K. Šašková, J. Brynda, J. Pokorná, F. Mammano, L. Rulíšek, and J. Konvalinka, Molecular analysis of the HIV-1 resistance development: Enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants, J. Mol. Biol. 374 (2007), pp. 1005–1016. doi:10.1016/j.jmb.2007.09.083.
  • S. Muzammil, A.A. Armstrong, L.W. Kang, A. Jakalian, P.R. Bonneau, V. Schmelmer, L.M. Amzel, and E. Freire, Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations, J. Virol. 81 (2007), pp. 5144–5154. doi:10.1128/JVI.02706-06.
  • D.A. Ragland, E.A. Nalivaika, M.N.L. Nalam, K.L. Prachanronarong, H. Cao, R.M. Bandaranayake, Y. Cai, N. Kurt-Yilmaz, and C.A. Schiffer, Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease, J. Am. Chem. Soc. 136 (2014), pp. 11956–11963. doi:10.1021/ja504096m.
  • J. Agniswamy, C.-H. Shen, Y.-F. Wang, A.K. Ghosh, K.V. Rao, C.-X. Xu, J.M. Sayer, J.M. Louis, and I.T. Weber, Extreme multidrug resistant HIV-1 protease with 20 mutations is resistant to novel protease inhibitors with p1′-pyrrolidinone or p2-tris-tetrahydrofuran, J. Med. Chem. 56 (2013), pp. 4017–4027. doi:10.1021/jm400231v.
  • G. Leonis, T. Steinbrecher, and M.G. Papadopoulos, A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation i50v: A systematic mm–pbsa and thermodynamic integration study, J. Chem. Inf. Model. 53 (2013), pp. 2141–2153. doi:10.1021/ci4002102.
  • J. Chen, S. Zhang, X. Liu, and Q. Zhang, Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: Free energy calculation and molecular dynamic simulation, J. Mol. Model. 16 (2010), pp. 459–468. doi:10.1007/s00894-009-0553-7.
  • A.Y. Kovalevsky, A.A. Chumanevich, F. Liu, J.M. Louis, and I.T. Weber, Caught in the act:  The 1.5 Å resolution crystal structures of the HIV-1 protease and the I54V mutant reveal a tetrahedral reaction intermediate, Biochemistry-US 46 (2007), pp. 14854–14864. doi:10.1021/bi700822g.
  • A.M. Borman, S. Paulous, and F. Clavel, Resistance of human immunodeficiency virus type 1 to protease inhibitors: Selection of resistance mutations in the presence and absence of the drug, J. Gen. Virol. 77 (1996), pp. 419–426. doi:10.1099/0022-1317-77-3-419.
  • R. Duan, R. Lazim, and D. Zhang, Understanding the basis of I50V-induced affinity decrease in HIV-1 protease via molecular dynamics simulations using polarized force field, J. Comput. Chem. 36 (2015), pp. 1885–1892. doi:10.1002/jcc.24020.
  • D.S. Clutter, P.R. Sánchez, S.-Y. Rhee, and R.W. Shafer, Genetic variability of HIV-1 for drug resistance assay development, Viruses 8 (2016), pp. 48. doi:10.3390/v8020048.
  • Y. Tie, Y.-F. Wang, P.I. Boross, T.-Y. Chiu, A.K. Ghosh, J. Tozser, J.M. Louis, R.W. Harrison, and I.T. Weber, Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors, Protein Sci. 21 (2012), pp. 339–350. doi:10.1002/pro.2019.
  • S. Pazhanisamy, C.M. Stuver, A.B. Cullinan, N. Margolin, B.G. Rao, and D.J. Livingston, Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants, J. Biol. Chem. 271 (1996), pp. 17979–17985. doi:10.1074/jbc.271.30.17979.
  • F. Liu, A.Y. Kovalevsky, Y. Tie, A.K. Ghosh, R.W. Harrison, and I.T. Weber, Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir, J. Mol. Biol. 381 (2008), pp. 102–115. doi:10.1016/j.jmb.2008.05.062.
  • G.-D. Hu, T. Zhu, S.-L. Zhang, D. Wang, and Q.-G. Zhang, Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations, Eur. J. Med. Chem. 45 (2010), pp. 227–235. doi:10.1016/j.ejmech.2009.09.048.
  • P. Kar and V. Knecht, Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir, J. Comput. Aid. Mol. Des. 26 (2012), pp. 215–232. doi:10.1007/s10822-012-9550-5.
  • K. Wittayanarakul, O. Aruksakunwong, S. Saen-oon, W. Chantratita, V. Parasuk, P. Sompornpisut, and S. Hannongbua, Insights into saquinavir resistance in the G48V HIV-1 protease: Quantum calculations and molecular dynamic simulations, Biophys. J. 88 (2005), pp. 867–879. doi:10.1529/biophysj.104.046110.
  • N.M. King, M. Prabu-Jeyabalan, R.M. Bandaranayake, M.N.L. Nalam, E.A. Nalivaika, A. Özen, T. Haliloǧlu, N.K. Yılmaz, and C.A. Schiffer, Extreme entropy–enthalpy compensation in a drug-resistant variant of HIV-1 protease, ACS Chem. Biol. 7 (2012), pp. 1536–1546. doi:10.1021/cb300191k.
  • M. Kolli, A. Özen, N. Kurt-Yilmaz, C.A. Schiffer, and W.I. Sundquist, HIV-1 protease-substrate coevolution in nelfinavir resistance, J. Virol. 88 (2014), pp. 7145–7154. doi:10.1128/JVI.00266-14.
  • J.L. Paulsen, F. Leidner, D.A. Ragland, N. Kurt Yilmaz, and C.A. Schiffer, Interdependence of inhibitor recognition in HIV-1 protease, J. Chem. Theor. Comput. 13 (2017), pp. 2300–2309. doi:10.1021/acs.jctc.6b01262.
  • S.N. Khan, J.D. Persons, J.L. Paulsen, M. Guerrero, C.A. Schiffer, N. Kurt-Yilmaz, and R. Ishima, Probing structural changes among analogous inhibitor-bound forms of HIV-1 protease and a drug-resistant mutant in solution by nuclear magnetic resonance, Biochemistry-US 57 (2018), pp. 1652–1662. doi:10.1021/acs.biochem.7b01238.
  • W. Xue, F. Yang, P. Wang, G. Zheng, Y. Chen, X. Yao, and F. Zhu, What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation, ACS Chem. Neurosci. 9 (2018), pp. 1128–1140. doi:10.1021/acschemneuro.7b00490.
  • J. Chen, S. Zhang, Q. Zeng, W. Wang, Q. Zhang, and X. Liu, Free energy profiles relating with conformational transition of the switch domains induced by G12 mutations in GTP-bound KRAS, Front. Mol. Biosci. 9 (2022), pp. 912518. doi:10.3389/fmolb.2022.912518.
  • J. Chen, S. Zhang, W. Wang, L. Pang, Q. Zhang, and X. Liu, Mutation-induced impacts on the switch transformations of the GDP- and GTP-bound K-ras: Insights from multiple replica Gaussian accelerated molecular dynamics and free energy analysis, J. Chem. Inf. Model. 61 (2021), pp. 1954–1969. doi:10.1021/acs.jcim.0c01470.
  • G. Hu, A. Ma, and J. Wang, Ligand selectivity mechanism and conformational changes in guanine riboswitch by molecular dynamics simulations and free energy calculations, J. Chem. Inf. Model. 57 (2017), pp. 918–928. doi:10.1021/acs.jcim.7b00139.
  • J. Wang and Y. Miao, Mechanistic insights into specific G protein interactions with adenosine receptors, J. Phys. Chem. B 123 (2019), pp. 6462–6473. doi:10.1021/acs.jpcb.9b04867.
  • S. Liang, X. Liu, S. Zhang, M. Li, Q. Zhang, and J. Chen, Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations, Phys. Chem. Chem. Phys. 24 (2022), pp. 1743–1759. doi:10.1039/D1CP04361G.
  • J. Devillers, C. Lagneau, A. Lattes, J.C. Garrigues, M.M. Clémenté, and A. Yébakima, In silico models for predicting vector control chemicals targeting Aedes aegypti, SAR QSAR Environ. Res. 25 (2014), pp. 805–835. doi:10.1080/1062936X.2014.958291.
  • J. Wang and Y. Miao, Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding, J. Chem. Phys. 153 (2020), pp. 154109. doi:10.1063/5.0021399.
  • W. Xue, P. Wang, G. Tu, F. Yang, G. Zheng, X. Li, X. Li, Y. Chen, X. Yao, and F. Zhu, Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder, Phys. Chem. Chem. Phys. 20 (2018), pp. 6606–6616. doi:10.1039/C7CP07869B.
  • S.S. Liang, X.G. Liu, Y.X. Cui, S.L. Zhang, Q.G. Zhang, and J.Z. Chen, Molecular mechanism concerning conformational changes of CDK2 mediated by binding of inhibitors using molecular dynamics simulations and principal component analysis, SAR QSAR Environ. Res. 32 (2021), pp. 573–594. doi:10.1080/1062936X.2021.1934896.
  • J. Chen, B. Yin, W. Wang, and H. Sun, Effects of disulfide bonds on binding of inhibitors to β-amyloid cleaving enzyme 1 decoded by multiple replica accelerated molecular dynamics simulations, ACS Chem. Neurosci. 11 (2020), pp. 1811–1826. doi:10.1021/acschemneuro.0c00234.
  • C. Wang, D.A. Greene, L. Xiao, R. Qi, and R. Luo, Recent developments and applications of the MMPBSA method, Front. Mol. Biosci. 4 (2018), pp. 87. doi:10.3389/fmolb.2017.00087.
  • H. Tzoupis, G. Leonis, T. Mavromoustakos, and M.G. Papadopoulos, A comparative molecular dynamics, MM–PBSA and thermodynamic integration study of saquinavir complexes with wild-type HIV-1 PR and L10I, G48V, L63P, A71V, G73S, V82A and I84V single mutants, J. Chem. Theory Comput. 9 (2013), pp. 1754–1764. doi:10.1021/ct301063k.
  • J. Chen, X. Wang, L. Pang, J.Z.H. Zhang, and T. Zhu, Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations, Nucleic Acids Res. 47 (2019), pp. 6618–6631. doi:10.1093/nar/gkz499.
  • J. Devillers, Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, CRC Press, Boca Raton, 2018.
  • A. Badaya and Y.U. Sasidhar, Inhibition of the activity of HIV-1 protease through antibody binding and mutations probed by molecular dynamics simulations, Sci. Rep-UK 10 (2020), pp. 5501. doi:10.1038/s41598-020-62423-y.
  • F. Leidner, N. Kurt Yilmaz, J. Paulsen, Y.A. Muller, and C.A. Schiffer, Hydration structure and dynamics of inhibitor-bound HIV-1 protease, J. Chem. Theory Comput. 14 (2018), pp. 2784–2796. doi:10.1021/acs.jctc.8b00097.
  • I. Ancy, M. Sivanandam, and P. Kumaradhas, Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: A molecular docking, molecular dynamics and binding free energy simulation study, J. Biomol. Struct. Dyn. 39 (2021), pp. 5368–5375. doi:10.1080/07391102.2020.1786459.
  • S. Shi, S. Zhang, and Q. Zhang, Insight into binding mechanisms of inhibitors MKP56, MKP73, MKP86, and MKP97 to HIV-1 protease by using molecular dynamics simulation, J. Biomol. Struct. Dyn. 36 (2018), pp. 981–992. doi:10.1080/07391102.2017.1305296.
  • R.-G. Wang, H.-X. Zhang, and Q.-C. Zheng, Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses, Phys. Chem. Chem. Phys. 22 (2020), pp. 4464–4480. doi:10.1039/C9CP06657H.
  • R. Wang and Q. Zheng, Multiple molecular dynamics simulations and free-energy predictions uncover the susceptibility of variants of HIV-1 protease against inhibitors darunavir and KNI-1657, Langmuir 37 (2021), pp. 14407–14418. doi:10.1021/acs.langmuir.1c02348.
  • Y.X. Yu, W.T. Liu, H.Y. Li, W. Wang, H.B. Sun, L.L. Zhang, and S.L. Wu, Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations, SAR QSAR Environ. Res. 32 (2021), pp. 889–915. doi:10.1080/1062936X.2021.1979647.
  • Y. Gao, T. Zhu, and J. Chen, Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method, Chem. Phys. Lett. 706 (2018), pp. 400–408. doi:10.1016/j.cplett.2018.06.040.
  • T. Hou, W.A. McLaughlin, and W. Wang, Evaluating the potency of HIV-1 protease drugs to combat resistance, Proteins 71 (2008), pp. 1163–1174. doi:10.1002/prot.21808.
  • T. Hou and R. Yu, Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors:  Mechanism for binding and drug resistance, J. Med. Chem. 50 (2007), pp. 1177–1188. doi:10.1021/jm0609162.
  • Y.X. Yu, W. Wang, H.B. Sun, L.L. Zhang, S.L. Wu, and W.T. Liu, Insights into effect of the Asp25/Asp25ʹ protonation states on binding of inhibitors amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations, SAR QSAR Environ. Res. 32 (2021), pp. 615–641. doi:10.1080/1062936X.2021.1939149.
  • J. Chen, X. Wang, T. Zhu, Q. Zhang, and J.Z.H. Zhang, A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 protease based on thermodynamic integration and MM-PBSA methods, J. Chem. Inf. Model. 55 (2015), pp. 1903–1913. doi:10.1021/acs.jcim.5b00173.
  • J. Chen, C. Peng, J. Wang, and W. Zhu, Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling, Proteins 86 (2018), pp. 1294–1305. doi:10.1002/prot.25610.
  • J. Chen, X. Liu, S. Zhang, J. Chen, H. Sun, L. Zhang, and Q. Zhang, Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses, Phys. Chem. Chem. Phys. 22 (2020), pp. 2262–2275. doi:10.1039/C9CP05704H.
  • W. Wang and P.A. Kollman, Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance, Proc. Natl. Acad. Sci. USA 98 (2001), pp. 14937–14942.
  • L. Crisan and A. Bora, Small molecules of natural origin as potential anti-HIV agents: A computational approach, Life Sci. 11 (2021), pp. 722.
  • S.S. Çınaroğlu and E. Timuçin, Comprehensive evaluation of the MM-GBSA method on bromodomain-inhibitor sets, Brief. Bioinform. 21 (2019), pp. 2112–2125. doi:10.1093/bib/bbz143.
  • M. Panda, P. Purohit, and B.R. Meher, Structure-based virtual screening, ADMET profiling, and molecular dynamics simulation studies on HIV-1 protease for identification of active phytocompounds as potential anti-HIV agents, Mol. Simulat. 48 (2022), pp. 1031–1049. doi:10.1080/08927022.2022.2060968.
  • R.K. Raju, N.A. Burton, and I.H. Hillier, Modelling the binding of HIV-reverse transcriptase and nevirapine: An assessment of quantum mechanical and force field approaches and predictions of the effect of mutations on binding, Phys. Chem. Chem. Phys. 12 (2010), pp. 7117–7125. doi:10.1039/c001384f.
  • J. Chen, W. Wang, H. Sun, L. Pang, and H. Bao, Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies, Comput. Biol. Med. 134 (2021), pp. 104485. doi:10.1016/j.compbiomed.2021.104485.
  • J.Z.R. Martins, C. Chappey, M. Haddad, J.M. Whitcomb, E. Stawiski, C.J. Petropoulos, and S. Bonhoeffer, Principal component analysis of general patterns of HIV-1 replicative fitness in different drug environments, Epidemics-Neth 2 (2010), pp. 85–91. doi:10.1016/j.epidem.2010.03.003.
  • K.R. Karnati and Y. Wang, Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis, J. Mol. Graph. Model. 92 (2019), pp. 112–122. doi:10.1016/j.jmgm.2019.07.008.
  • S. Majumder and K. Giri, An insight into the binding mechanism of Viprinin and its morpholine and piperidine derivatives with HIV-1 Vpr: Molecular dynamics simulation, principal component analysis and binding free energy calculation study, J. Biomol. Struct. Dyn. (2021), pp. 1–13. doi:10.1080/07391102.2021.1954553.
  • L. Yang, G. Song, A. Carriquiry, and R.L. Jernigan, Close Correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes, Structure 16 (2008), pp. 321–330. doi:10.1016/j.str.2007.12.011.
  • J. Chen, L. Wang, W. Wang, H. Sun, L. Pang, and H. Bao, Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis, Comput. Biol. Med. 135 (2021), pp. 104639. doi:10.1016/j.compbiomed.2021.104639.
  • F. Yan, X. Liu, S. Zhang, J. Su, Q. Zhang, and J. Chen, Molecular dynamics exploration of selectivity of dual inhibitors 5M7, 65X, and 65Z toward fatty acid binding proteins 4 and 5, Int. J. Mol. Sci. 19 (2018), pp. 2496. doi:10.3390/ijms19092496.
  • C. Tse, L. Wickstrom, M. Kvaratskhelia, E. Gallicchio, R. Levy, and N. Deng, Exploring the free-energy landscape and thermodynamics of protein-protein association, Biophys. J. 119 (2020), pp. 1226–1238. doi:10.1016/j.bpj.2020.08.005.
  • Q. Sun, R.M. Levy, K.A. Kirby, Z. Wang, S.G. Sarafianos, and N. Deng, Molecular dynamics free energy simulations reveal the mechanism for the antiviral resistance of the M66I HIV-1 capsid mutation, Viruses 13 (2021), pp. 920. doi:10.3390/v13050920.
  • Y. Li, L. Deng, L.-Q. Yang, P. Sang, and S.-Q. Liu, Effects of CD4 binding on conformational dynamics, molecular motions, and thermodynamics of HIV-1 gp120, Int. J. Mol. Sci. 20 (2019), pp. 260. doi:10.3390/ijms20020260.
  • J. Chen, S. Zhang, W. Wang, H. Sun, Q. Zhang, and X. Liu, Binding of inhibitors to BACE1 affected by ph-dependent protonation: An exploration from multiple replica Gaussian accelerated molecular dynamics and MM-GBSA calculations, ACS Chem. Neurosci. 12 (2021), pp. 2591–2607. doi:10.1021/acschemneuro.0c00813.
  • J. Chen, M. Yang, G. Hu, S. Shi, C. Yi, and Q. Zhang, Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: Molecular dynamics simulations and free energy calculations, J. Mol. Model. 15 (2009), pp. 1245–1252. doi:10.1007/s00894-009-0452-y.
  • W.E. Harte and D.L. Beveridge, Prediction of the protonation state of the active site aspartyl residues in HIV-1 protease-inhibitor complexes via molecular dynamics simulation, J. Am. Chem. Soc. 115 (1993), pp. 3883–3886. doi:10.1021/ja00063a005.
  • J. Chen, Z. Liang, W. Wang, C. Yi, S. Zhang, and Q. Zhang, Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations, Sci. Rep-UK 4 (2014), pp. 6872. doi:10.1038/srep06872.
  • D.C. Bas, D.M. Rogers, and J.H. Jensen, Very fast prediction and rationalization of pKa values for protein–ligand complexes, Proteins 73 (2008), pp. 765–783. doi:10.1002/prot.22102.
  • H. Li, A.D. Robertson, and J.H. Jensen, Very fast empirical prediction and rationalization of protein pKa values, Proteins 61 (2005), pp. 704–721. doi:10.1002/prot.20660.
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • A. Jakalian, B.L. Bush, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I, Method, J. Comput. Chem. 21 (2000), pp. 132–146. doi:10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • D. Vassetti, M. Pagliai, and P. Procacci, Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules, J. Chem. Theory Comput. 15 (2019), pp. 1983–1995. doi:10.1021/acs.jctc.8b01039.
  • J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, and R.D. Skeel, Langevin stabilization of molecular dynamics, J. Chem. Phys. 114 (2001), pp. 2090–2098. doi:10.1063/1.1332996.
  • J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341. doi:10.1016/0021-9991(77)90098-5.
  • T. Darden, D. York, and L. Pedersen, Particle mesh ewald: An N ⋅log(N) method for ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593. doi:10.1063/1.470117.
  • J. Chen, W. Wang, H. Sun, L. Pang, and B. Yin, Mutation-mediated influences on binding of anaplastic lymphoma kinase to crizotinib decoded by multiple replica Gaussian accelerated molecular dynamics, J. Comput. Aid. Mol. Des. 34 (2020), pp. 1289–1305. doi:10.1007/s10822-020-00355-5.
  • D.R. Roe and T.E. Cheatham, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996), pp. 33–38. doi:10.1016/0263-7855(96)00018-5.
  • M.R. Shirts, J.W. Pitera, W.C. Swope, and V.S. Pande, Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins, J. Chem. Phys. 119 (2003), pp. 5740–5761. doi:10.1063/1.1587119.
  • W. Wang and P.A. Kollman, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model11Edited by B, Honig, J. Mol. Biol. 303 (2000), pp. 567–582. doi:10.1006/jmbi.2000.4057.
  • W. Wang and P.A. Kollman, Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance, Proc. Natl. Acad. Sci. 98 (2001), pp. 14937–14942. doi:10.1073/pnas.251265598.
  • M. Ylilauri and O.T. Pentikäinen, MMGBSA as a tool to understand the binding affinities of filamin–peptide interactions, J. Chem. Inf. Model. 53 (2013), pp. 2626–2633. doi:10.1021/ci4002475.
  • E.A. Rifai, M. Van Dijk, N.P.E. Vermeulen, A. Yanuar, and D.P. Geerke, A comparative linear interaction energy and MM/PBSA study on SIRT1–ligand binding free energy calculation, J. Chem. Inf. Model. 59 (2019), pp. 4018–4033. doi:10.1021/acs.jcim.9b00609.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, Insight into selective mechanism of class of I-BRD9 inhibitors toward BRD9 based on molecular dynamics simulations, Chem. Biol. Drug Des. 93 (2019), pp. 163–176. doi:10.1111/cbdd.13398.
  • K.S. Schaller, J. Kari, G.A. Molina, K.D. Tidemand, K. Borch, G.H.J. Peters, and P. Westh, Computing cellulase kinetics with a two-domain linear interaction energy approach, ACS Omega 6 (2021), pp. 1547–1555. doi:10.1021/acsomega.0c05361.
  • H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring, Phys. Chem. Chem. Phys. 16 (2014), pp. 22035–22045. doi:10.1039/C4CP03179B.
  • H. Sun, Y. Li, S. Tian, L. Xu, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set, Phys. Chem. Chem. Phys. 16 (2014), pp. 16719–16729. doi:10.1039/C4CP01388C.
  • H. Gohlke, C. Kiel, and D.A. Case, Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes, J. Mol. Biol. 330 (2003), pp. 891–913. doi:10.1016/S0022-2836(03)00610-7.
  • J. Chen, Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions, RSC Adv. 6 (2016), pp. 58573–58585. doi:10.1039/C6RA09201B.
  • B.R. Meher and Y. Wang, Interaction of I50V mutant and i50L/A71V double mutant HIV-protease with inhibitor TMC114 (Darunavir): Molecular dynamics simulation and binding free energy studies, J. Phys. Chem. B 116 (2012), pp. 1884–1900. doi:10.1021/jp2074804.
  • R. Wang and Q. Zheng, Multiple molecular dynamics simulations of the inhibitor GRL-02031 complex with wild type and mutant HIV-1 protease reveal the binding and drug-resistance mechanism, Langmuir 36 (2020), pp. 13817–13832. doi:10.1021/acs.langmuir.0c02151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.