458
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Finding inhibitors and deciphering inhibitor-induced conformational plasticity in the Janus kinase via multiscale simulations

ORCID Icon & ORCID Icon
Pages 833-859 | Received 17 Aug 2022, Accepted 03 Nov 2022, Published online: 18 Nov 2022

References

  • C. Schindler, D.E. Levy, and T. Decker, JAK-STAT signaling: From interferons to cytokines, J. Biol. Chem. 282 (2007), pp. 20059–20063. doi:10.1074/jbc.R700016200.
  • K. Sanachai, P. Mahalapbutr, K. Choowongkomon, R.P. Poo-arporn, P. Wolschann, and T. Rungrotmongkol, Insights into the binding recognition and susceptibility of Tofacitinib toward Janus kinases, ACS Omega 5 (2020), pp. 369–377. doi:10.1021/acsomega.9b02800.
  • D.E. Levy and J.E. Darnell, STATs: Transcriptional control and biological impact, Nat. Rev. Mol. Cell Biol. 3 (2002), pp. 651–662. doi:10.1038/nrm909.
  • S.A. Oakes and F.R. Papa, The role of endoplasmic reticulum stress in human pathology, Annu. Rev. Pathol. 10 (2015), pp. 173–194. doi:10.1146/annurev-pathol-012513-104649.
  • A.V. Villarino, Y. Kanno, J.R. Ferdinand, and J.J. O’Shea, Mechanisms of Jak/STAT signaling in immunity and disease, J. Immunol. 194 (2015), pp. 21–27. doi:10.4049/jimmunol.1401867.
  • S.G. Sims and G.P. Meares, Janus kinase 1 is required for transcriptional reprograming of murine astrocytes in response to endoplasmic reticulum stress, Front. Cell Neurosci. (2019), pp. 13. Available at https://www.frontiersin.org/articles/10.3389/fncel.2019.00446.
  • L. Song and C. Schindler, Handbook of Cell Signaling, 2nd ed., R.A. Bradshaw and E.A. Dennis, eds., Academic Press, San Diego, 2010, pp. 2041–2048.
  • Y. Tu, Y. Zhong, J. Fu, Y. Cao, G. Fu, X. Tian, and B. Wang, Activation of JAK/STAT signal pathway predicts poor prognosis of patients with gliomas, Med. Oncol. 28 (2011), pp. 15–23. doi:10.1007/s12032-010-9435-1.
  • C.S. Nicolas, M. Amici, Z.A. Bortolotto, A. Doherty, Z. Csaba, A. Fafouri, P. Dournaud, P. Gressens, G.L. Collingridge, and S. Peineau, The role of JAK-STAT signaling within the CNS, JAK-STAT 2 (2013), pp. e22925. doi:10.4161/jkst.22925.
  • Z. Yan, S.A. Gibson, J.A. Buckley, H. Qin, and E.N. Benveniste, Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases, Clin. Immunol. 189 (2018), pp. 4–13. doi:10.1016/j.clim.2016.09.014.
  • M. Jain, M.K. Singh, H. Shyam, A. Mishra, S. Kumar, A. Kumar, and J. Kushwaha, Role of JAK/STAT in the neuroinflammation and its association with neurological disorders, Ann. Neurosci. 28 (2022), pp. 191–200. doi:10.1177/09727531211070532.
  • N.A. Lashgari, N.M. Roudsari, S. Momtaz, T. Sathyapalan, A.H. Abdolghaffari, and A. Sahebkar, The involvement of JAK/STAT signaling pathway in the treatment of Parkinson’s disease, J. Neuroimmunol. 361 (2021), pp. 577758. doi:10.1016/j.jneuroim.2021.577758.
  • N. Lesgidou, E. Eliopoulos, G.N. Goulielmos, and M. Vlassi, Insights on the alteration of functionality of a tyrosine kinase 2 variant: A molecular dynamics study, Bioinformatics 34 (2018), pp. i781–i786. doi:10.1093/bioinformatics/bty556.
  • T. Sato, T. Toki, R. Kanezaki, G. Xu, K. Terui, H. Kanegane, M. Miura, S. Adachi, M. Migita, S. Morinaga, T. Nakano, M. Endo, S. Kojima, H. Kiyoi, H. Mano, and E. Ito, Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome, Br. J. Haematol. 141 (2008), pp. 681–688. doi:10.1111/j.1365-2141.2008.07081.x.
  • K. Ghoreschi, A. Laurence, and J.J. O’Shea, Janus kinases in immune cell signaling, Immunol. Rev. 228 (2009), pp. 273–287. doi:10.1111/j.1600-065X.2008.00754.x.
  • C.G. Mullighan, J. Zhang, R.C. Harvey, J.R. Collins-Underwood, B.A. Schulman, L.A. Phillips, S.K. Tasian, M.L. Loh, X. Su, W. Liu, M. Devidas, S.R. Atlas, I.M. Chen, R.J. Clifford, D.S. Gerhard, W.L. Carroll, G.H. Reaman, M. Smith, J.R. Downing, S.P. Hunger, and C.L. Willman, JAK mutations in high-risk childhood acute lymphoblastic leukemia, Proc. Natl. Acad. Sci. USA 106 (2009), pp. 9414–9418. doi:10.1073/pnas.0811761106.
  • A.T. Virtanen, T. Haikarainen, J. Raivola, and O. Silvennoinen, Selective JAKinibs: Prospects in inflammatory and autoimmune diseases, BioDrugs 33 (2019), pp. 15–32. doi:10.1007/s40259-019-00333-w.
  • C. Harrison, J.J. Kiladjian, H.K. Al-Ali, H. Gisslinger, R. Waltzman, V. Stalbovskaya, M. McQuitty, D.S. Hunter, R. Levy, L. Knoops, F. Cervantes, A.M. Vannucchi, T. Barbui, and G. Barosi, JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis, N. Engl. J. Med. 366 (2012), pp. 787–798. doi:10.1056/NEJMoa1110556.
  • K. Ghoreschi, M.I. Jesson, X. Li, J.L. Lee, S. Ghosh, J.W. Alsup, J.D. Warner, M. Tanaka, S.M. Steward-Tharp, M. Gadina, C.J. Thomas, J.C. Minnerly, C.E. Storer, T.P. LaBranche, Z.A. Radi, M.E. Dowty, R.D. Head, D.M. Meyer, N. Kishore, and J.J. O’Shea, Modulation of innate and adaptive immune responses by Tofacitinib (CP-690,550), J. Immunol. 186 (2011), pp. 4234–4243. doi:10.4049/jimmunol.1003668.
  • A. Mogul, K. Corsi, and L. McAuliffe, Baricitinib: The second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis, Ann. Pharmacother. 53 (2019), pp. 947–953. doi:10.1177/1060028019839650.
  • J.M. Parmentier, J. Voss, C. Graff, A. Schwartz, M. Argiriadi, M. Friedman, H.S. Camp, R.J. Padley, J.S. George, D. Hyland, M. Rosebraugh, N. Wishart, L. Olson, and A.J. Long, In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494), BMC Rheumatol 2 (2018), pp. 23.
  • P. Wu, T.E. Nielsen, and M.H. Clausen, FDA-approvedsmall-molecule kinase inhibitors, Trends Pharmacol. Sci. 36 (2015), pp. 422–439. doi:10.1016/j.tips.2015.04.005.
  • N.K. Williams, R.S. Bamert, O. Patel, C. Wang, P.M. Walden, A.F. Wilks, E. Fantino, J. Rossjohn, and I.S. Lucet, Dissecting specificity in the Janus Kinases: The structures of JAK-Specific inhibitors complexed to the JAK1 and jak2 protein tyrosine kinase domains, J. Mol. Biol. 387 (2009), pp. 219–232. doi:10.1016/j.jmb.2009.01.041.
  • T.D. Goddard, C.C. Huang, E.C. Meng, E.F. Pettersen, G.S. Couch, J.H. Morris, and T.E. Ferrin, UCSF ChimeraX: Meeting modern challenges in visualization and analysis: UCSF ChimeraX visualization system, Protein Sci. 27 (2018), pp. 14–25. doi:10.1002/pro.3235.
  • E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel, and R.A. Friesner, OPLS3: A force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory Comput. 12 (2016), pp. 281–296. doi:10.1021/acs.jctc.5b00864.
  • T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, and J.L. Banks, Glide: A new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening, J. Med. Chem. 47 (2004), pp. 1750–1759. doi:10.1021/jm030644s.
  • R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, and D.T. Mainz, Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes, J. Med. Chem. 49 (2006), pp. 6177–6196. doi:10.1021/jm051256o.
  • A. Daina, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017), pp. 42717. doi:10.1038/srep42717.
  • D.E.V. Pires, T.L. Blundell, and D.B. Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem. 58 (2015), pp. 4066–4072. doi:10.1021/acs.jmedchem.5b00104.
  • P. Banerjee, A.O. Eckert, A.K. Schrey, and R. Preer, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018), pp. W257–W263. doi:10.1093/nar/gky318.
  • G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, and D. Cao, ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res. 49 (2021), pp. W5–W14. doi:10.1093/nar/gkab255.
  • A.D. Becke, Density-functionalexchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988), pp. 3098–3100. doi:10.1103/PhysRevA.38.3098.
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37 (1988), pp. 785–789. doi:10.1103/PhysRevB.37.785.
  • D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, S.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York, and P.A. Kollman, AMBER 2018, Univ. Calif. San Franc (2018).
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • D.J. Price and C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation, J. Chem. Phys. 121 (2004), pp. 10096–10103. doi:10.1063/1.1808117.
  • V. Kräutler, W.F. van Gunsteren, and P.H. Hünenberger, A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations, J. Comput. Chem. 22 (2001), pp. 501–508. doi:10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • R.J. Loncharich, B.R. Brooks, and R.W. Pastor, Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide, Biopolymers 32 (1992), pp. 523–535. doi:10.1002/bip.360320508.
  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), pp. 3684–3690. doi:10.1063/1.448118.
  • D.R. Roe and T.E. Cheatham, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, and A.E. Roitberg, MMPBSA.py: An efficient program for end-state free energy calculations, J. Chem. Theory Comput. 8 (2012), pp. 3314–3321. doi:10.1021/ct300418h.
  • P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, and T.E. Cheatham, Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (2000), pp. 889–897. doi:10.1021/ar000033j.
  • H. Gohlke, C. Kiel, and D.A. Case, Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes, J. Mol. Biol. 330 (2003), pp. 891–913. doi:10.1016/S0022-2836(03)00610-7.
  • O. Indari, M.F. Sk, S. Jakhmola, N.A. Jonniya, H.C. Jha, and P. Kar, Decoding the host–parasite protein interactions involved in cerebral malaria through glares of molecular dynamics simulations, J. Phys. Chem. B. 126 (2022), pp. 387–402. doi:10.1021/acs.jpcb.1c07850.
  • B. Jayaram, Y. Liu, and D.L. Beveridge, A modification of the generalized Born theory for improved estimates of solvation energies and pK shifts, J. Chem. Phys. 109 (1998), pp. 1465–1471. doi:10.1063/1.476697.
  • N.A. Jonniya, M.F. Sk, and P. Kar, Characterizing an allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamics simulations, Phys. Chem. Chem. Phys. 23 (2021), pp. 7343–7358. doi:10.1039/D0CP05733A.
  • S. Jakhmola, N.A. Jonniya, M.F. Sk, A. Rani, P. Kar, and H.C. Jha, Identification of potential inhibitors against Epstein–Barr virus nuclear antigen 1 (EBNA1): An insight from docking and molecular dynamic simulations, ACS Chem. Neurosci. 12 (2021), pp. 3060–3072. doi:10.1021/acschemneuro.1c00350.
  • N.A. Jonniya, M.F. Sk, and P. Kar, Elucidating specificity of an allosteric inhibitor WNK476 among With-No-Lysine kinase isoforms using molecular dynamic simulations, Chem. Biol. Drug Des. 98 (2021), pp. 405–420. doi:10.1111/cbdd.13863.
  • V.H. Masand, M.F. Sk, P. Kar, V. Rastija, and M.E.A. Zaki, Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations, Chemom. Intell. Lab Syst. 217 (2021), pp. 104394. doi:10.1016/j.chemolab.2021.104394.
  • S. Singh, M.F. Sk, A. Sonawane, P. Kar, and S. Sadhukhan, Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: An in-silico analysis, J. Biomol. Struct. Dyn. 39 (2021), pp. 6249–6264. doi:10.1080/07391102.2020.1796810.
  • M.F. Sk, N.A. Jonniya, R. Roy, S. Poddar, and P. Kar, Computational investigation of structural dynamics of SARS-CoV-2 methyltransferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM, Front. Mol. Biosci. 7 (2020), pp. 590165. doi:10.3389/fmolb.2020.590165.
  • N.A. Jonniya, M.F. Sk, and P. Kar, Investigating phosphorylation-induced conformational changes in WNK1 kinase by molecular dynamics simulations, ACS Omega 4 (2019), pp. 17404–17416. doi:10.1021/acsomega.9b02187.
  • R. Roy, N.A. Jonniya, S. Poddar, M.F. Sk, and P. Kar, Unraveling the molecular mechanism of recognition of human interferon-stimulated gene product 15 by coronavirus papain-like proteases: A multiscale simulation study, J. Chem. Inf. Model. 61 (2021), pp. 6038–6052. doi:10.1021/acs.jcim.1c00918.
  • M.F. Sk, S. Haridev, R. Roy, and P. Kar, Investigating potency of TMC-126 against wild-type and mutant variants of HIV-1 protease: A molecular dynamics and free energy study, SAR QSAR Environ. Res. 32 (2021), pp. 941–962. doi:10.1080/1062936X.2021.1999318.
  • V. Srimai, M. Ramesh, K. Satya Parameshwar, and T. Parthasarathy, Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives, Med. Chem. Res. 22 (2013), pp. 5314–5323. doi:10.1007/s00044-013-0532-5.
  • Z. Wang, C.E. Hop, K.H. Leung, and J. Pang, Determination of in vitro permeability of drug candidates through a caco-2 cell monolayer by liquid chromatography/tandem mass spectrometry, J. Mass. Spectrom. 35 (2000), pp. 71–76. doi:10.1002/(SICI)1096-9888(200001)35:1<71::AID-JMS915>3.0.CO;2-5.
  • Y. Cao, T. Jiang, and T. Girke, A maximum common substructure-based algorithm for searching and predicting drug-like compounds, Bioinformatics 24 (2008), pp. i366–i374. doi:10.1093/bioinformatics/btn186.
  • T.W.H. Backman, Y. Cao, and T. Girke, ChemMine tools: An online service for analyzing and clustering small molecules, Nucleic Acids Res. 39 (2011), pp. W486–W491. doi:10.1093/nar/gkr320.
  • Y. Cao, A. Charisi, L.C. Cheng, T. Jiang, and T. Girke, ChemmineR: A compound mining framework for R, Bioinformatics 24 (2008), pp. 1733–1734. doi:10.1093/bioinformatics/btn307.
  • M.F. Sk, N.A. Jonniya, R. Roy, and P. Kar, Unraveling the molecular mechanism of recognition of selected next-generation antirheumatoid arthritis inhibitors by Janus kinase 1, ACS Omega 7 (2022), pp. 6195–6209. doi:10.1021/acsomega.1c06715.
  • B.J. Grant, A.P.C. Rodrigues, K.M. ElSawy, J.A. McCammon, and L.S.D. Caves, Bio3d: An R package for the comparative analysis of protein structures, Bioinformatics 22 (2006), pp. 2695–2696. doi:10.1093/bioinformatics/btl461.
  • M.C. Chan, E. Procko, and D. Shukla, Structural rearrangement of the serotonin transporter intracellular gate induced by Thr276 pPhosphorylation, ACS Chem. Neurosci. 13 (2022), pp. 933–945. doi:10.1021/acschemneuro.1c00714.
  • M.M. Sultan, G. Kiss, and V.S. Pande, Towards simple kinetic models of functional dynamics for a kinase subfamily, Nat. Chem. 10 (2018), pp. 903–909. doi:10.1038/s41557-018-0077-9.
  • C.C. Tsai, Z. Yue, and J. Shen, How electrostatic coupling enables conformational plasticity in a tyrosine kinase, J. Am. Chem. Soc. 141 (2019), pp. 15092–15101. doi:10.1021/jacs.9b06064.
  • H. Möbitz, The ABC of protein kinase conformations, Biochim. Biophys. Acta BBA 1854 (2015), pp. 1555–1566. doi:10.1016/j.bbapap.2015.03.009.
  • Y. Meng, C. Gao, D.K. Clawson, S. Atwell, M. Russell, M. Vieth, and B. Roux, Predicting the conformational variability of Abl tyrosine kinase using molecular dynamics simulations and Markov state models, J. Chem. Theory Comput. 14 (2018), pp. 2721–2732. doi:10.1021/acs.jctc.7b01170.
  • N. Jura, X. Zhang, N.F. Endres, M.A. Seeliger, T. Schindler, and J. Kuriyan, Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms, Mol. Cell. 42 (2011), pp. 9–22. doi:10.1016/j.molcel.2011.03.004.
  • Y. Shan, A. Arkhipov, E.T. Kim, A.C. Pan, and D.E. Shaw, Transitions to catalytically inactive conformations in EGFR kinase, Proc. Natl. Acad. Sci. USA 110 (2013), pp. 7270–7275. doi:10.1073/pnas.1220843110.
  • A.S. Moffett, K.W. Bender, S.C. Huber, and D. Shukla, Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases, J. Biol. Chem. 292 (2017), pp. 12643–12652. doi:10.1074/jbc.M117.792762.
  • N.A. Jonniya, M.F. Sk, R. Roy, and P. Kar, Discovery of potential competitive inhibitors against With-No-Lysine kinase 1 for treating hypertension by virtual screening, inverse pharmacophore-based lead optimization, and molecular dynamics simulations, SAR QSAR Environ. Res. 33 (2022), pp. 1–25. doi:10.1080/1062936X.2021.2023218.
  • M.F. Sk, R. Roy, N.A. Jonniya, S. Poddar, and P. Kar, Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations, J. Biomol. Struct. Dyn. 39 (2021), pp. 3649–3661. doi:10.1080/07391102.2020.1768149.
  • M.F. Sk, R. Roy, and P. Kar, Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations, J. Biomol. Struct. Dyn. 39 (2021), pp. 988–1003. doi:10.1080/07391102.2020.1724196.
  • P.S. Changelian, M.E. Flanagan, D.J. Ball, C.R. Kent, K.S. Magnuson, W.H. Martin, B.J. Rizzuti, P.S. Sawyer, B.D. Perry, W.H. Brissette, S.P. McCurdy, E.M. Kudlacz, M.J. Conklyn, E.A. Elliott, E.R. Koslov, M.B. Fisher, T.J. Strelevitz, K. Yoon, D.A. Whipple, J. Sun, M.J. Munchhof, J.L. Doty, J.M. Casavant, T.A. Blumenkopf, M. Hines, M.F. Brown, B.M. Lillie, C. Subramanyam, C. Shang-Poa, A.J. Milici, G.E. Beckius, J.D. Moyer, C. Su, T.G. Woodworth, A.S. Gaweco, C.R. Beals, B.H. Littman, D.A. Fisher, J.F. Smith, P. Zagouras, H.A. Magna, M.J. Saltarelli, K.S. Johnson, L.F. Nelms, S.G. Des Etages, L.S. Hayes, T.T. Kawabata, D. Finco-Kent, D.L. Baker, M. Larson, M.S. Si, R. Paniagua, J. Higgins, B. Holm, B. Reitz, Y.J. Zhou, R.E. Morris, J.J. O’Shea, and D.C. Borie, Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor, Science 302 (2003), pp. 875–878. doi:10.1126/science.1087061.
  • A. Mayence and J.J. Vanden Eynde, Baricitinib: A 2018 novel FDA-approved small molecule inhibiting Janus kinases, Pharmaceuticals 12 (2019), pp. 37. doi:10.3390/ph12010037.
  • J.L. Wang, L.P. Cheng, T.C. Wang, W. Deng, and F.H. Wu, Molecular modeling study of CP-690550 derivatives as JAK3 kinase inhibitors through combined 3D-QSAR, molecular docking, and dynamics simulation techniques, J. Mol. Graph. Model. 72 (2017), pp. 178–186. doi:10.1016/j.jmgm.2016.12.020.
  • R. Itteboina, S. Ballu, S.K. Sivan, and V. Manga, Molecular docking, 3D QSAR and dynamics simulation studies of imidazo-pyrrolopyridines as janus kinase 1 (JAK 1) inhibitors, Comput. Biol. Chem. 64 (2016), pp. 33–46. doi:10.1016/j.compbiolchem.2016.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.