177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 915-931 | Received 22 Sep 2022, Accepted 10 Nov 2022, Published online: 22 Dec 2022

References

  • J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram, and F. Bray, Global Cancer Observatory: Cancer Today, International Agency for Research on Cancer, Lyon, France, 2020.
  • J.E. Bolden, M.J. Peart, and R.W. Johnstone, Anticancer activities of histone deacetylase inhibitors, Nat. Rev. Drug Discov. 5 (2006), pp. 769–784. doi:10.1038/nrd2133.
  • V.N. Osipov, D.S. Khachatryan, and A.N. Balaev, Biologically active quinazoline-based hydroxamic acids, Med. Chem. Res. 29 (2020), pp. 831–845. doi:10.1007/s00044-020-02530-7.
  • C.A. Dinarello, G. Fossati, and P. Mascagni, Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer, Mol. Med. 17 (2011), pp. 333–352. doi:10.2119/molmed.2011.00116.
  • M. Halili, M. Andrews, M. Sweet, and D. Fairlie, Histone deacetylase inhibitors in inflammatory disease, Curr. Top. Med. Chem. 9 (2009), pp. 309–319. doi:10.2174/156802609788085250.
  • Y.H. Kao, J.P. Liou, C.C. Chung, G.S. Lien, C.C. Kuo, S.A. Chen, and Y.J. Chen, Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure, Int. J. Cardiol. 168 (2013), pp. 4178–4183. doi:10.1016/j.ijcard.2013.07.111.
  • E.N. Muratov, J. Bajorath, R.P. Sheridan, I.V. Tetko, D. Filimonov, V. Poroikov, T.I. Oprea, I.I. Baskin, A. Varnek, A. Roitberg, O. Isayev, S. Curtalolo, D. Fourches, Y. Cohen, A. Aspuru-Guzik, D.A. Winkler, D. Agrafiotis, A. Cherkasov, and A. Tropsha, QSAR without borders, Chem. Soc. Rev. 49 (2020), pp. 3525–3716.
  • H. Tang, X.S. Wang, X.P. Huang, B.L. Roth, K.V. Butler, A.P. Kozikowski, M. Jung, and A. Tropsha, Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation, J. Chem. Inf. Model. 49 (2009), pp. 461–476. doi:10.1021/ci800366f.
  • L. Zhao, Y. Xiang, J. Song, and Z. Zhang, A novel two-step QSAR modeling work flow to predict selectivity and activity of HDAC inhibitors, Bioorg. Med. Chem. Lett. 23 (2013), pp. 929–933. doi:10.1016/j.bmcl.2012.12.067.
  • S.K. Choubey and J. Jeyaraman, A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study, J. Mol. Graph. Model. 70 (2016), pp. 54–69. doi:10.1016/j.jmgm.2016.09.008.
  • J. Shi, G. Zhao, and Y. Wei, Computational QSAR model combined molecular descriptors and fingerprints to predict HDAC1 inhibitors, Med. Sci. 34 (2018), pp. 52–58. doi:10.1051/medsci/201834f110.
  • U. Norinder, J.J. Naveja, E. López-López, D. Mucs, and J.L. Medina-Franco, Conformal prediction of HDAC inhibitors, SAR QSAR Environ. Res. 30 (2019), pp. 265–277. doi:10.1080/1062936X.2019.1591503.
  • H. Pham-The, G. Casañola-Martin, K. Diéguez-Santana, N. Nguyen-Hai, N.T. Ngoc, L. Vu-Duc, and H. Le-Thi-Thu, Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries, SAR QSAR Environ. Res. 28 (2017), pp. 199–220. doi:10.1080/1062936X.2017.1294198.
  • D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Félix, M.P. Magariños, J.F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Marañón, F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, C.J. Radoux, A. Segura-Cabrera, A. Hersey, and A.R. Leach, ChEMBL: Towards direct deposition of bioassay data, Nucl. Acids Res. 47 (2019), pp. D930–D940. doi:10.1093/nar/gky1075.
  • O.V. Tinkov, V.Y. Grigorev, L.D. Grigoreva, V.N. Osipov, A.V. Kolotaev, and D.S. Khachatryan, QSAR analysis and experimental evaluation of new quinazoline-containing hydroxamic acids as histone deacetylase 6 inhibitors, SAR QSAR Environ. Res. 33 (2022), pp. 513–532. doi:10.1080/1062936X.2022.2092210.
  • D.E. Olson, F.F. Wagner, T. Kaya, J.P. Gale, N. Aidoud, E.L. Davoine, F. Lazzaro, M. Weïwer, Y.L. Zhang, and E.B. Holson, Discovery of the first histone deacetylase 6/8 dual inhibitors, J. Med. Chem. 56 (2013), pp. 4816–4820. doi:10.1021/jm400390r.
  • S. Tan, F. He, T. Kong, J. Wu, and Z. Liu, Design, synthesis and tumor cell growth inhibitory activity of 3-nitro-2H-cheromene derivatives as histone deacetylaes inhibitors, Bioorg. Med. Chem. 25 (2017), pp. 4123–4132. doi:10.1016/j.bmc.2017.05.062.
  • Z. Yang, T. Wang, F. Wang, T. Niu, Z. Liu, X. Chen, C. Long, M. Tang, D. Cao, X. Wang, W. Xiang, Y. Yi, L. Ma, J. You, and L. Chen, Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer, J. Med. Chem. 59 (2016), pp. 1455–1470. doi:10.1021/acs.jmedchem.5b01342.
  • Y. Chen, X. Wang, W. Xiang, L. He, M. Tang, F. Wang, T. Wang, Z. Yang, Y. Yi, H. Wang, T. Niu, L. Zheng, L. Lei, X. Li, H. Song, and L. Chen, Development of purine-based hydroxamic acid derivatives: Potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities, J. Med. Chem. 59 (2016), pp. 5488–5504. doi:10.1021/acs.jmedchem.6b00579.
  • D.N. Reddy, F. Ballante, T. Chuang, A. Pirolli, B. Marrocco, and G.R. Marshall, Design and synthesis of simplified largazole analogues as isoform-selective human lysine deacetylase inhibitors, J. Med. Chem. 59 (2016), pp. 1613–1633. doi:10.1021/acs.jmedchem.5b01632.
  • X. Chen, S. Zhao, H. Li, X. Wang, A. Geng, H. Cui, T. Lu, Y. Chen, and Y. Zhu, Design, synthesis and biological evaluation of novel isoindolinone derivatives as potent histone deacetylase inhibitors, Eur. J. Med. Chem. 168 (2019), pp. 110–122. doi:10.1016/j.ejmech.2019.02.032.
  • Y. Chen, X. Yuan, W. Zhang, M. Tang, L. Zheng, F. Wang, W. Yan, S. Yang, Y. Wei, J. He, and L. Chen, Discovery of novel dual histone deacetylase and mammalian target of rapamycin target inhibitors as a promising strategy for cancer therapy, J. Med. Chem. 62 (2019), pp. 1577–1592. doi:10.1021/acs.jmedchem.8b01825.
  • J. Cheng, J. Qin, S. Guo, H. Qiu, and Y. Zhong, Design, synthesis and evaluation of novel HDAC inhibitors as potential antitumor agents, Bioorg. Med. Chem. Lett. 24 (2014), pp. 4768–4772. doi:10.1016/j.bmcl.2014.06.080.
  • M. Shao, L. He, L. Zheng, L. Huang, Y. Zhou, T. Wang, Y. Chen, M. Shen, F. Wang, Z. Yang, and L. Chen, Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors, Bioorg. Med. Chem. Lett. 27 (2017), pp. 4051–4055. doi:10.1016/j.bmcl.2017.07.054.
  • Y. Wan, Y. Li, C. Yan, M. Yan, and Z. Tang, Indole: A privileged scaffold for the design of anti-cancer agents, Eur. J. Med. Chem. 183 (2019), pp. 111691. doi:10.1016/j.ejmech.2019.111691.
  • R. Sangwan, R. Rajan, and P.K. Mandal, HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors, Eur. J. Med. Chem. 158 (2018), pp. 620–706. doi:10.1016/j.ejmech.2018.08.073.
  • S.C. Ding, Y.Z. Chen, Y.Z. Chen, Y.Z. Chen, Y.Z. Chen, Y.Z. Chen, Y. Jiang, and Y. Jiang, Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy, Bioorg. Med. Chem. 25 (2017), pp. 27–37. doi:10.1016/j.bmc.2016.10.006.
  • G. Estiu, N. West, R. Mazitschek, E. Greenberg, J.E. Bradner, and O. Wiest, On the inhibition of histone deacetylase 8, Bioorg. Med. Chem. 18 (2010), pp. 4103–4110. doi:10.1016/j.bmc.2010.03.080.
  • H. Hu, F. Chen, Y. Dong, M. Li, S. Xu, M. Qin, and P. Gong, Discovery of novel c-mesenchymal-epithelia transition factor and histone deacetylase dual inhibitors, Eur. J. Med. Chem. 204 (2020), pp. 112651. doi:10.1016/j.ejmech.2020.112651.
  • K. Fang, G. Dong, Y. Li, S. He, Y. Wu, S. Wu, W. Wang, and C. Sheng, Discovery of novel indoleamine 2,3-dioxygenase 1 (IDO1) and histone deacetylase (HDAC) dual inhibitors, ACS Med. Chem. Lett. 9 (2018), pp. 312–317. doi:10.1021/acsmedchemlett.7b00487.
  • F. Yang, P. Shan, N. Zhao, D. Ge, K. Zhu, C.S. Jiang, P. Li, and H. Zhang, Development of hydroxamate-based histone deacetylase inhibitors containing 1,2,4-oxadiazole moiety core with antitumor activities, Bioorg. Med. Chem. Lett. 29 (2019), pp. 15–21. doi:10.1016/j.bmcl.2018.11.027.
  • Z. Yuan, S. Chen, Q. Sun, N. Wang, D. Li, S. Miao, C. Gao, Y. Chen, C. Tan, and Y. Jiang, Olaparib hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy, Bioorg. Med. Chem. 25 (2017), pp. 4100–4109. doi:10.1016/j.bmc.2017.05.058.
  • O. Rabal, J.A. Sánchez-Arias, M. Cuadrado-Tejedor, I. de Miguel, M. Pérez-González, C. García-Barroso, A. Ugarte, A. Estella-Hermoso de Mendoza, E. Sáez, M. Espelosin, S. Ursua, T. Haizhong, W. Wei, X. Musheng, A. Garcia-Osta, and J. Oyarzabal, Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer’s disease, Eur. J. Med. Chem. 150 (2018), pp. 506–524. doi:10.1016/j.ejmech.2018.03.005.
  • F.F. Wagner, D.E. Olson, J.P. Gale, T. Kaya, M. Weïwer, N. Aidoud, M. Thomas, E.L. Davoine, B.C. Lemercier, Y.L. Zhang, and E.B. Holson, Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif, J. Med. Chem. 56 (2013), pp. 1772–1776.
  • B. Ghosh, W.N. Zhao, S.A. Reis, D. Patnaik, D.M. Fass, L.H. Tsai, R. Mazitschek, and S.J. Haggarty, Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation, Bioorg. Med. Chem. Lett. 26 (2016), pp. 1265–1271. doi:10.1016/j.bmcl.2016.01.022.
  • J. Chen, D. Li, W. Li, J. Yin, Y. Zhang, Z. Yuan, C. Gao, F. Liu, and Y. Jiang, Design, synthesis and anticancer evaluation of acridine hydroxamic acid derivatives as dual Topo and HDAC inhibitors, Bioorg. Med. Chem. 26 (2018), pp. 3958–3966. doi:10.1016/j.bmc.2018.06.016.
  • J. Liu, J. Zhou, F. He, L. Gao, Y. Wen, L. Gao, P. Wang, D. Kang, and L. Hu, Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening, Eur. J. Med. Chem. 192 (2020), pp. 112189. doi:10.1016/j.ejmech.2020.112189.
  • Z. Yuan, Q. Sun, D. Li, S. Miao, S. Chen, L. Song, C. Gao, Y. Chen, C. Tan, and Y. Jiang, Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors, Eur. J. Med. Chem. 134 (2017), pp. 281–292. doi:10.1016/j.ejmech.2017.04.017.
  • T. Beckers, S. Mahboobi, A. Sellmer, M. Winkler, E. Eichhorn, H. Pongratz, T. Maier, T. Ciossek, T. Baer, G. Kelter, H. Fiebig, and M. Schmidt, Chimerically designed HDAC- and tyrosine kinase inhibitors. A series of erlotinib hybrids as dual-selective inhibitors of EGFR, HER2 and histone deacetylases, MedChemComm. 3 (2012), pp. 829–835. doi:10.1039/c2md00317a.
  • Y. Dong, H. Hu, Y. Sun, M. Qin, P. Gong, Y. Hou, and Y. Zhao, Design, synthesis and biological evaluation of novel c-Met/HDAC dual inhibitors, Bioorg. Med. Chem. Lett. 30 (2020), pp. 127610. doi:10.1016/j.bmcl.2020.127610.
  • M.J. Lai, H.L. Huang, S.L. Pan, Y.M. Liu, C.Y. Peng, H.Y. Lee, T.K. Yeh, P.H. Huang, C.M. Teng, C.S. Chen, H.Y. Chuang, and J.P. Liou, Synthesis and biological evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as potent histone deacetylase inhibitors with antitumor activity in vivo, J. Med. Chem. 55 (2012), pp. 3777–3791. doi:10.1021/jm300197a.
  • M. Swain, MolVS: Molecule validation and standardization tool, 2019; software available at https://molvs.readthedocs.io/en/latest/guide/intro.html (Accessed September 20th 2022).
  • G. Landrum, RDKit - open source toolkit for cheminformatics, 2013; software available at https://www.rdkit.org/docs/index.html (Accessed September 20th 2022).
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, Jmlr 12 (2011), pp. 2825–2830.
  • V.M. Alves, S.J. Capuzzi, R.C. Braga, D. Korn, J.E. Hochuli, K.H. Bowler, A. Yasgar, G. Rai, A. Simeonov, E.N. Muratov, A.V. Zakharov, and A. Tropsha, SCAM detective: Accurate predictor of small, colloidally aggregating molecules, J. Chem. Inf. Model. 60 (2020), pp. 4056–4063. doi:10.1021/acs.jcim.0c00415.
  • D. Krstajic, L.J. Buturovic, D.E. Leahy, and S. Thomas, Cross-validation pitfalls when selecting and assessing regression and classification models, J. Cheminform. 6 (2014), pp. 10. doi:10.1186/1758-2946-6-10.
  • IMSL, Fortran Numerical Libraries; 2021. software available at https://help.imsl.com/fortran/ (Accessed September 20th 2022).
  • O.A. Raevsky, V. Yu, D.B.K. Grigor’ev, and N.S. Zefirov, Complete thermodynamic description of H-bonding in the framework of multiplicative approach, Quant. Struct. Act. Relat. 11 (1992), pp. 49–63. doi:10.1002/qsar.19920110109.
  • V. Yu and L.D. Grigoreva, Calculation and properties of fractal descriptors for C2–C9 alkanes, Mosc. Univ. Chem. Bull. 71 (2016), pp. 199–204. doi:10.3103/S0027131416030056.
  • Streamlit 1.10.0. An open-source Python library; software available at https://docs.streamlit.io/ (Accessed September 20th 2022).
  • G. Van Rossum and F.L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.
  • C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J. Fernandez Del Rio, M. Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T.E. Oliphant, Array programming with NumPy, Nature 585 (2020), pp. 357–362. doi:10.1038/s41586-020-2649-2.
  • W. McKinney, Data structures for statistical computing in Python, 9th Python in Science Conference, Austin, 2010.
  • J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007), pp. 90–95. doi:10.1109/MCSE.2007.55.
  • Click 8.1.3. Python composable command line interface toolkit; software available at https://github.com/pallets/click (Accessed September 20th 2022).
  • Joblib: Running Python functions as pipeline jobs; software available at https://joblib.readthedocs.io/en/latest/ (Accessed September 20th 2022).
  • py3Dmol is an object-oriented, webGL based JavaScript library for online molecular visualization; software available at https://github.com/3dmol/3Dmol.js/tree/master/py3Dmol (Accessed September 20th 2022).
  • N. Rego and D. Koes, 3Dmol.js: Molecular visualization with WebGL, Bioinformatics. 31 (2015), pp. 1322–1324. doi:10.1093/bioinformatics/btu829.
  • S. Riniker and G.A. Landrum, Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods, J. Cheminform. 5 (2013), pp. article number: 43. doi:10.1186/1758-2946-5-43.
  • L.M. Butler, Y. Webb, D.B. Agus, B. Higgins, T.R. Tolentino, M.C. Kutko, M.P. LaQuaglia, M. Drobnjak, C. Cordon-Cardo, H.I. Scher, R. Breslow, V.M. Richon, R.A. Rifkind, and P.A. Marks, Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase, Clin. Cancer Res. 7 (2001), pp. 962–970.
  • A.S. Madsen and C.A. Olsen, A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action, Med. Chem. Commun. 7 (2016), pp. 464–470. doi:10.1039/C5MD00451A.
  • M. Dokmanovic, C. Clarke, and P.A. Marks, Histone deacetylase inhibitors: Overview and perspectives, Mol. Cancer Res. 5 (2007), pp. 981–989. doi:10.1158/1541-7786.MCR-07-0324.
  • A. Frühauf and F.-J. Meyer-Almes, Non-hydroxamatezinc-binding groups as warheads for histone deacetylases, Molecules 26 (2021), pp. 5151. doi:10.3390/molecules26175151.
  • A.S. Madsen, H.M.E. Kristensen, G. Lanz, and C.A. Olsen, The effect of various zinc binding groups on inhibition of histone deacetylases 1-11, ChemMedChem 9 (2014), pp. 614–626. doi:10.1002/cmdc.201300433.
  • T. Genkov and I. Ivanova, Effect of cytokinin-active phenylurea derivatives on shoot multiplication, Bulg. J. Plant Physiol. 21 (1995), pp. 73–83.
  • E.W. Debler, G.F. Kaufmann, M.M. Meijler, A. Heine, J.M. Mee, G. Pljevaljcic, A.J. Di Bilio, P.G. Schultz, D.P. Millar, K.D. Janda, I.A. Wilson, H.B. Gray, and R.A. Lerner, Deeply inverted electron-hole recombination in a luminescent antibody-stilbene complex, Science 319 (2008), pp. 1232–1235. doi:10.1126/science.1153445.
  • F.W. Peng, T.T. Wu, Z.W. Ren, J.Y. Xue, and L. Shi, Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase, Bioorg. Med. Chem. Lett. 25 (2015), pp. 5137–5141. doi:10.1016/j.bmcl.2015.10.006.
  • F.W. Peng, J. Xuan, T.T. Wu, J.Y. Xue, Z.W. Ren, D.K. Liu, X.Q. Wang, X.H. Chen, J.W. Zhang, Y.G. Xu, and L. Shi, Design, synthesis and biological evaluation of N–phenylquinazolin–4–amine hybrids as dual inhibitors of VEGFR–2 and HDAC, Eur. J. Med. Chem. 109 (2016), pp. 1–12. doi:10.1016/j.ejmech.2015.12.033.
  • S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E.E. Bolton, PubChem in 2021: New data content and improved web interfaces, Nucl. Acids Res. 49 (2019), pp. D1388–D1395. doi:10.1093/nar/gkaa971.
  • A. Daina, O. Michielin, and V. Zoete, SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules, Nucl. Acids Res. 47 (2019), pp. W357–W364. doi:10.1093/nar/gkz382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.