144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A mechanism-based fate model of pesticide solutions on the plant surface under aerial application

ORCID Icon, &
Pages 933-952 | Received 02 Oct 2022, Accepted 11 Nov 2022, Published online: 30 Nov 2022

References

  • Y. Luo and M. Zhang, Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed, PLoS One 6 (2011), pp. e15794. doi:10.1371/journal.pone.0015794.
  • F. Maggi, D. la Cecilia, F.H.M. Tang, and A. McBratney, The global environmental hazard of glyphosate use, Sci. Total Environ. 717 (2020), pp. 137167. doi:10.1016/j.scitotenv.2020.137167.
  • F. Maggi, F.H.M. Tang, A.J. Black, G.B. Marks, and A. McBratney, The pesticide health risk index - An application to the world’s countries, Sci. Total Environ. 801 (2021), pp. 149731. doi:10.1016/j.scitotenv.2021.149731.
  • E. López Dávila, M. Houbraken, J. de Rop, A. Wumbei, G. du Laing, O. Romero, and P. Spanoghe, Pesticides residues in tobacco smoke: Risk assessment study, Environ. Monit. Assess. 192 (2020), pp. 1–15. doi:10.1007/s10661-020-08578-7.
  • M. Houbraken, V. Habimana, D. Senaeve, E. López-Dávila, and P. Spanoghe, Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda, Sci. Total Environ. 576 (2017), pp. 888–894. doi:10.1016/j.scitotenv.2016.10.127.
  • D.J. Pérez, F.G. Iturburu, G. Calderon, L.A.E. Oyesqui, E. de Gerónimo, and V.C. Aparicio, Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina, Chemosphere 263 (2021), pp. 128061. doi:10.1016/j.chemosphere.2020.128061.
  • P. Fantke and O. Jolliet, Life cycle human health impacts of 875 pesticides, Int. J. Life Cycle Assess. 21 (2016), pp. 722–733. doi:10.1007/s11367-015-0910-y.
  • E. Vlassi, E. Bempelou, K. Liapis, and G. Arapis, Consumer safety evaluation after monitoring of endocrine disruptor pesticide residues: A case study of Thessaly, Central Greece, Toxicol. Environ. Chem. 102 (2020), pp. 105–123. doi:10.1080/02772248.2020.1770256.
  • M.G. da S. Brochado, K.C. Mielke, D.F. de Paula, A.F.S. Laube, R. Alcántara-de la Cruz, M.P. Gonzatto, and K.M. Mendes, Impacts of dicamba and 2,4-D drift on ‘Ponkan’ mandarin seedlings, soil microbiota and Amaranthus retroflexus, J. Hazard. Mater. Advances 6 (2022), pp. 100084. doi:10.1016/j.hazadv.2022.100084.
  • A. Sayed, M. Chys, J. de Rop, L. Goeteyn, P. Spanoghe, and I. Sampers, Pesticide residues in (treated) wastewater and products of Belgian vegetable- and potato processing companies, Chemosphere 280 (2021), pp. 130619. doi:10.1016/j.chemosphere.2021.130619.
  • Y. Galani, M. Houbraken, A. Wumbei, J.F. Djeugap, D. Fotio, Y.Y. Gong, and P. Spanoghe, Monitoring and dietary risk assessment of 81 pesticide residues in 11 local agricultural products from the 3 largest cities of Cameroon, Food Control 118 (2020), pp. 107416. doi:10.1016/j.foodcont.2020.107416.
  • Z. Li, The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures, Sci. Total Environ. 639 (2018), pp. 438–456. doi:10.1016/j.scitotenv.2018.05.148.
  • P. Fantke, R. Charles, L.F. de Alencastro, R. Friedrich, and O. Jolliet, Plant uptake of pesticides and human health: Dynamic modeling of residues in wheat and ingestion intake, Chemosphere 85 (2011), pp. 1639–1647. doi:10.1016/j.chemosphere.2011.08.030.
  • Q. An, Y. Wu, D. Li, X. Hao, C. Pan, and A. Rein, Development and application of a numerical dynamic model for pesticide residues in apple orchards, Pest Manag. Sci. 78 (2022), pp. 2679–2692. doi:10.1002/ps.6897.
  • P. Fantke, Modelling the environmental impacts of pesticides in agriculture, in Assessing the Environmental Impact of Agriculture, B. Weidema, ed., Burleigh Dodds Science Publishing, Cambridge, 2019, pp. 177–228.
  • P. Fantke, R. Friedrich, and O. Jolliet, Health impact and damage cost assessment of pesticides in Europe, Environ. Int. 49 (2012), pp. 9–17. doi:10.1016/j.envint.2012.08.001.
  • R.E. Jacobsen, P. Fantke, and S. Trapp, Analysing half-lives for pesticide dissipation in plants, SAR QSAR Environ. Res. 26 (2015), pp. 325–342. doi:10.1080/1062936X.2015.1034772.
  • Z. Li, Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes, J. Hazard Mater. 434 (2022), pp. 128911. doi:10.1016/j.jhazmat.2022.128911.
  • S. Xiao, Z. Li, and P. Fantke, Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics, Pest Manag. Sci. 77 (2021), pp. 5096–5108. doi:10.1002/ps.6549.
  • T. Katagi, Photodegradation of pesticides on plant and soil surfaces, Rev. Environ. Contam. Toxicol. 182 (2004), pp. 1–78.
  • N. Xi, Y. Li, and X. Xia, A review of pesticide phototransformation on the leaf surface: Models, mechanism, and influencing factors, Chemosphere 308 (2022), pp. 136260. doi:10.1016/j.chemosphere.2022.136260.
  • M. Houbraken, D. Senaeve, E.L. Dávila, V. Habimana, B. de Cauwer, and P. Spanoghe, Formulation approaches to reduce post-application pesticide volatilisation from glass surfaces, Sci. Total Environ. 633 (2018), pp. 728–737. doi:10.1016/j.scitotenv.2018.03.186.
  • S.M. Lyons and K.J. Hageman, Foliar photodegradation in pesticide fate modeling: Development and evaluation of the Pesticide Dissipation from Agricultural Land (PeDAL) model, Environ. Sci. Technol. 55 (2021), pp. 4842–4850. doi:10.1021/acs.est.0c07722.
  • X. Xu, S. Yu, R. Li, J. Fan, S. Chen, H. Shen, J.L. Han, B.F. Huang, and Y. Ren, Distribution and migration study of pesticides between peel and pulp in grape by online gel permeation chromatography–gas chromatography/mass spectrometry, Food Chem. 135 (2012), pp. 161–169. doi:10.1016/j.foodchem.2012.04.052.
  • D. Zhang, J. Tang, G. Zhang, X. Wu, Q. Sun, C. Jia, T. Shi, H. Fang, X. Wu, H. Li, and R. Hua, Deposition, dissipation, metabolism and dietary risk assessment of chlorothalonil in open field-planted cabbage, J. Food Compos. Anal. 102 (2021), pp. 104008. doi:10.1016/j.jfca.2021.104008.
  • S. Trapp, D. Rasmussen, and L. Samsøe-Petersen, Fruit tree model for uptake of organic compounds from soil, SAR QSAR Environ. Res. 14 (2003), pp. 17–26. doi:10.1080/1062936021000058755.
  • S. Trapp, Fruit tree model for uptake of organic compounds from soil and air, SAR QSAR Environ. Res. 18 (2007), pp. 367–387. doi:10.1080/10629360701303693.
  • Z. Li, A coupled ODE-diffusion modeling framework for removing organic contaminants in crops using a simple household method, Environ. Pollut. 265 (2020), pp. 115071. doi:10.1016/j.envpol.2020.115071.
  • S. Trapp, A. Cammarano, E. Capri, F. Reichenberg, and P. Mayer, Diffusion of PAH in potato and carrot slices and application for a potato model, Environ. Sci. Technol. 41 (2007), pp. 3103–3108. doi:10.1021/es062418o.
  • L.C. Paraíba and K. Kataguiri, Model approach for estimating potato pesticide bioconcentration factor, Chemosphere 73 (2008), pp. 1247–1252. doi:10.1016/j.chemosphere.2008.07.026.
  • A. Buchholz, P. Baur, and J. Schönherr, Differences among plant species in cuticular permeabilities and solute mobilities are not caused by differential size selectivities, Planta 206 (1998), pp. 322–328. doi:10.1007/s004250050407.
  • L. Schreiber, Polar paths of diffusion across plant cuticles: New evidence for an old hypothesis, Ann. Bot. 95 (2005), pp. 1069–1073. doi:10.1093/aob/mci122.
  • A. Buchholz and J. Schönherr, Thermodynamic analysis of diffusion of non-electrolytes across plant cuticles in the presence and absence of the plasticiser tributyl phosphate, Planta 212 (2000), pp. 103–111. doi:10.1007/s004250000372.
  • A. Buchholz, Characterization of the diffusion of non-electrolytes across plant cuticles: Properties of the lipophilic pathway, J. Exp. Bot. 57 (2006), pp. 2501–2513. doi:10.1093/jxb/erl023.
  • P. Baur, A. Buchholz, and J. Schönherr, Diffusion in plant cuticles as affected by temperature and size of organic solutes: Similarity and diversity among species, Plant Cell Environ. 20 (1997), pp. 982–994. doi:10.1111/j.1365-3040.1997.tb00675.x.
  • Evaporation from Water Surface; Available at https://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html.
  • Z. Li, A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil, Environ. Pollut. 256 (2020), pp. 113372. doi:10.1016/j.envpol.2019.113372.
  • Z. Li and J. Xiong, Simulation modeling the effects of peels on pesticide removal from potatoes during household food processing, Environ. Sci. Pollut. Res. 29 (2022), pp. 29841–29853. doi:10.1007/s11356-021-18298-1.
  • Z. Li, Modeling distribution and dissipation kinetics of pesticides in peel and medulla tissues of postharvest tuber crops, ACS Food Sci. Technol. 1 (2021), pp. 1909–1919. doi:10.1021/acsfoodscitech.1c00246.
  • Z. Li, Approximate modeling of the uptake of pesticides by grass for grazing risk assessment and pasture management, ACS Agric. Sci. Technol. 1 (2021), pp. 338–346. doi:10.1021/acsagscitech.1c00036.
  • J.I. Hwang, D.R. Seok, and J.E. Kim, Effects of cuticular waxes on permeation of fungicides azoxystrobin and chlorothalonil into apples, Appl. Biol. Chem. 62 (2019), pp. 1–9. doi:10.1186/s13765-019-0441-5.
  • R. Juraske, A. Antón, and F. Castells, Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models, Chemosphere 70 (2008), pp. 1748–1755. doi:10.1016/j.chemosphere.2007.08.047.
  • Z. Li, Modeling pesticide residues in nectar and pollen in support of pesticide exposure assessment for honeybees: A generic modeling approach, Ecotoxicol. Environ. Saf. 236 (2022), pp. 113507. doi:10.1016/j.ecoenv.2022.113507.
  • S. Trapp and M. Matthies, Generic one-compartment model for uptake of organic chemicals by foliar vegetation, Environ. Sci. Technol. 29 (1995), pp. 2333–2338. doi:10.1021/es00009a027.
  • R. Juraske, A. Antón, F. Castells, and M.A.J. Huijbregts, Human intake fractions of pesticides via greenhouse tomato consumption: Comparing model estimates with measurements for Captan, Chemosphere 67 (2007), pp. 1102–1107. doi:10.1016/j.chemosphere.2006.11.047.
  • USEtox® 2.0 Documentation (Version 1), 2017; Software available at https://usetox.org/(Assessed September 10, 2022).
  • Z. Li, Modeling pesticide residue uptake by leguminous plants: A geocarpic fruit model for peanuts, Pest Manag. Sci. (2022), In press. doi:10.1002/ps.7184.
  • Z. Li, Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants, J Environ. Manage. 276 (2020), pp. 111334. doi:10.1016/j.jenvman.2020.111334.
  • Z. Li, Spatiotemporal pattern models for bioaccumulation of pesticides in herbivores: An approximation theory for North American white-tailed deer, Sci. Total Environ. 737 (2020), pp. 140271. doi:10.1016/j.scitotenv.2020.140271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.