217
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A comparative quantitative structural assessment of benzothiazine-derived HDAC8 inhibitors by predictive ligand-based drug designing approaches

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 987-1011 | Received 17 Aug 2022, Accepted 01 Dec 2022, Published online: 19 Dec 2022

References

  • M.M. Hassan, J. Israelian, N. Nawar, G. Ganda, P. Manaswiyoungkul, Y.S. Raouf, D. Armstrong, A. Sedighi, O.O. Olaoye, F. Erdogan, A.D. Cabral, F. Angeles, R. Altintas, E.D. de Araujo, and P.T. Gunning, Characterization of conformationally constrained benzanilide scaffolds for potent and selective HDAC8 targeting, J. Med. Chem. 63 (2020), pp. 8634–8648. doi:10.1021/acs.jmedchem.0c01025.
  • M. Zhang, J.B. Ying, S.S. Wang, D. He, H. Zhu, C. Zhang, L. Tang, R. Lin, and Y. Zhang, Exploring the binding mechanism of HDAC8 selective inhibitors: Lessons from the modification of Cap group, J. Cell Biochem. 121 (2020), pp. 3162–3172. doi:10.1002/jcb.29583.
  • S. Ropero and M. Esteller, The role of histone deacetylases (HDACs) in human cancer, Mol. Oncol. 1 (2007), pp. 19–25. doi:10.1016/j.molonc.2007.01.001.
  • E. Seto and M. Yoshida, Erasers of histone acetylation: The histone deacetylase enzymes, Cold Spring Harbor Perspect. Biol. 6 (2014), pp. a018713. doi:10.1101/cshperspect.a018713.
  • S. Banerjee, N. Adhikari, S.A. Amin, and T. Jha, Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview, Eur. J. Med. Chem. 164 (2019), pp. 214–240. doi:10.1016/j.ejmech.2018.12.039.
  • K.J. Falkenberg and R.W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders, Nat. Rev. Drug Discov. 13 (2014), pp. 673–691.
  • A. Chakrabarti, I. Oehme, O. Witt, G. Oliveira, W. Sippl, C. Romier, R.J. Pierce, and M. Jung, HDAC8: A multifaceted target for therapeutic interventions, Trends. Pharmacol. Sci. 36 (2015), pp. 481–492. doi:10.1016/j.tips.2015.04.013.
  • T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone deacetylase inhibitors as anticancer drugs, Int. J. Mol. Sci. 18 (2017), pp. 1414. doi:10.3390/ijms18071414.
  • N. Adhikari, S.A. Amin, and T. Jha, Selective and nonselective HDAC8 inhibitors: A therapeutic patent review, Pharm. Pat. Anal. 7 (2018), pp. 259–276. doi:10.4155/ppa-2018-0019.
  • B. Coiffier, B. Pro, H.M. Prince, F. Foss, L. Sokol, M. Greenwood, D. Caballero, P. Borchmann, F. Morschhauser, M. Wilhelm, L. Pinter-Brown, S. Padmanabhan, A. Shustov, J. Nichols, S. Carroll, J. Balser, B. Balser, and S. Horwitz, Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy, J. Clin. Oncol. 30 (2012), pp. 631–636. doi:10.1200/JCO.2011.37.4223.
  • A. Chakrabarti, J. Melesina, F.R. Kolbinger, I. Oehme, J. Senger, O. Witt, W. Sippl, and M. Jung, Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases, Future Med. Chem. 8 (2016), pp. 1609–1634. doi:10.4155/fmc-2016-0117.
  • M.J. Bishton, S.J. Harrison, B.P. Martin, N. McLaughlin, C. James, E.C. Josefsson, K.J. Henley, B.T. Kile, H.M. Prince, and R.W. Johnstone, Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia, Blood 117 (2011), pp. 3658–3668. doi:10.1182/blood-2010-11-318055.
  • H.J. Mackay, H. Hirte, T. Colgan, A. Covens, K. MacAlpine, P. Grenci, L. Wang, J. Mason, P.A. Pham, M.S. Tsao, J. Pan, J. Zwiebel, and A.M. Oza, Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours, Eur. J. Cancer 46 (2010), pp. 1573–1579. doi:10.1016/j.ejca.2010.02.047.
  • P. Trivedi, N. Adhikari, S.A. Amin, Y. Bobde, R. Ganesh, T. Jha, and B. Ghosh, Design, synthesis, biological evaluation and molecular docking study of arylcarboxamido piperidine and piperazine-based hydroxamates as potential HDAC8 inhibitors with promising anticancer activity, Eur. J. Pharm. Sci. 138 (2019), pp. 105046. doi:10.1016/j.ejps.2019.105046.
  • S. Banerjee, N. Adhikari, S.A. Amin, and T. Jha, Structural exploration of tetrahydroisoquinoline derivatives as HDAC8 inhibitors through multi-QSAR modeling study, J. Biomol. Struct. Dyn. 38 (2020), pp. 1551–1564. doi:10.1080/07391102.2019.1617782.
  • I. Oehme, H.E. Deubzer, D. Wegener, D. Pickert, J.P. Linke, B. Hero, A. Kopp-Schneider, F. Westermann, S.M. Ulrich, A. von Deimling, M. Fischer, and O. Witt, Histone deacetylase 8 in neuroblastoma tumorigenesis, Clin. Cancer Res. 15 (2009), pp. 91–99. doi:10.1158/1078-0432.CCR-08-0684.
  • Y. Li, R. Liang, M. Sun, Z. Li, H. Sheng, J. Wang, P. Xu, S. Liu, W. Yang, B. Lu, S. Zhang, and C. Shan, AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation, Cancer Lett. 478 (2020), pp. 82–92. doi:10.1016/j.canlet.2020.03.007.
  • J. Wu, C. Du, Z. Lv, C. Ding, J. Cheng, H. Xie, L. Zhou, and S. Zheng, The up-regulation of histone deacetylase 8 promotes proliferation and inhibits apoptosis in hepatocellular carcinoma, Digest. Dis. Sci. 58 (2013), pp. 3545–3553. doi:10.1007/s10620-013-2867-7.
  • G. Lopez and R.E. Pollock, Evaluating the effect of HDAC8 inhibition in malignant peripheral nerve sheath tumors, Meth. Mol. Biol. 1510 (2017), pp. 365–374.
  • J.M. Watters, G. Wright, M.A. Smith, B. Shah, and K.L. Wright, Histone deacetylase 8 inhibition suppresses mantle cell lymphoma viability while preserving natural killer cell function, Biochem. Biophys. Res. Commun. 534 (2020), pp. 773–779.
  • M.F. Emmons, F. Faião-Flores, R. Sharma, R. Thapa, J.L. Messina, J.C. Becker, D. Schadendorf, E. Seto, V.K. Sondak, J.M. Koomen, Y.A. Chen, E.K. Lau, L. Wan, J.D. Licht, and K.S.M. Smalley, HDAC8 regulates a stress response pathway in melanoma to mediate escape from braf inhibitor therapy, Cancer Res. 79 (2019), pp. 2947–2961. doi:10.1158/0008-5472.CAN-19-0040.
  • J. Long, M.Y. Jia, W.Y. Fang, X.J. Chen, L.L. Mu, Z.Y. Wang, Y. Shen, R.F. Xiang, L.N. Wang, L. Wang, C.H. Jiang, J.L. Jiang, W.J. Zhang, Y.D. Sun, L. Chang, W.H. Gao, Y. Wang, J.M. Li, D.L. Hong, A.B. Liang, and J. Hu, FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia, Blood 135 (2020), pp. 1472–1483. doi:10.1182/blood.2019003538.
  • M. Spreafico, A.M. Gruszka, D. Valli, M. Mazzola, G. Deflorian, A. Quintè, M.G. Totaro, C. Battaglia, M. Alcalay, A. Marozzi, and A. Pistocchi, HDAC8: A promising therapeutic target for acute myeloid leukemia, Front. Cell Dev. Biol. 8 (2020), pp. 844. doi:10.3389/fcell.2020.00844.
  • T.L. Ramos, L.I. Sánchez-Abarca, A. Redondo, Á. Hernández-Hernández, A.M. Almeida, N. Puig, C. Rodríguez, R. Ortega, S. Preciado, A. Rico, S. Muntión, J.R.G. Porras, C. Del Cañizo, and F. Sánchez-Guijo, HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: A new therapeutic target?, Oncotarget 8 (2017), pp. 28187–28202. doi:10.18632/oncotarget.15969.
  • A. Umamaheswari, A. Puratchikody, and N. Hari, Synthesis and investigation of therapeutic potential of isoform-specific HDAC8 inhibitors for the treatment of cutaneous t cell lymphoma, Anticancer Agents Med. Chem. 19 (2019), pp. 916–934. doi:10.2174/1871520619666190301150254.
  • P. An, J. Li, L. Lu, Y. Wu, Y. Ling, J. Du, Z. Chen, and H. Wang, Histone deacetylase 8 triggers the migration of triple negative breast cancer cells via regulation of YAP signals, Eur. J. Pharmacol. 845 (2019), pp. 16–23. doi:10.1016/j.ejphar.2018.12.030.
  • G.R. Vanaja, H.G. Ramulu, and A.M. Kalle, Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6, Cell Commun. Signal. 16 (2018), pp. 1–6. doi:10.1186/s12964-018-0231-4.
  • S. Song, Y. Wang, P. Xu, R. Yang, Z. Ma, S. Liang, and G. Zhang, The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma, Int. J. Oncol. 47 (2015), pp. 1819–1828. doi:10.3892/ijo.2015.3182.
  • M.Y. Ahn and J.H. Yoon, Histone deacetylase 8 as a novel therapeutic target in oral squamous cell carcinoma, Oncol. Rep. 37 (2017), pp. 540–546. doi:10.3892/or.2016.5280.
  • C.H. Lee, Y. Choi, H. Cho, I.H. Bang, L. Hao, S.O. Lee, R. Jeon, E.J. Bae, and B.H. Park, Histone deacetylase 8 inhibition alleviates cholestatic liver injury and fibrosis, Biochem. Pharmacol. 183 (2020), pp. 114312. doi:10.1016/j.bcp.2020.114312.
  • T. Heimburg, A. Chakrabarti, J. Lancelot, M. Marek, J. Melesina, A.T. Hauser, T.B. Shaik, S. Duclaud, D. Robaa, F. Erdmann, M. Schmidt, C. Romier, R.J. Pierce, M. Jung, and W. Sippl, Structure-based design and synthesis of novel inhibitors targeting HDAC8 from Schistosoma mansoni for the treatment of schistosomiasis, J. Med. Chem. 59 (2016), pp. 2423–2435. doi:10.1021/acs.jmedchem.5b01478.
  • S. Saito, Y. Zhuang, T. Suzuki, Y. Ota, M.E. Bateman, A.L. Alkhatib, G.F. Morris, and J.A. Lasky, HDAC8 inhibition ameliorates pulmonary fibrosis, Am. J. Physiol. Lung Cell Mol. Physiol. 316 (2019), pp. L175–L186. doi:10.1152/ajplung.00551.2017.
  • T. Xiao, Y. Fu, W. Zhu, R. Xu, L. Xu, P. Zhang, Y. Du, J. Cheng, and H. Jiang, HDAC8, A Potential therapeutic target, regulates proliferation and differentiation of bone marrow stromal cells in fibrous dysplasia, Stem Cells Transl. Med. 8 (2019), pp. 148–161. doi:10.1002/sctm.18-0057.
  • Y. Zhang, J. Zou, E. Tolbert, T.C. Zhao, G. Bayliss, and S. Zhuang, Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis, FASEB J. 34 (2020), pp. 7295–7310.
  • S. Li, G. Fossati, C. Marchetti, D. Modena, P. Pozzi, L.L. Reznikov, M.L. Moras, T. Azam, A. Abbate, P. Mascagni, and C.A. Dinarello, Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo, J. Biol. Chem. 290 (2015), pp. 2368–2378.
  • S. Banerjee, S.A. Amin, N. Adhikari, and T. Jha, Essential elements regulating HDAC8 inhibition: A classification based structural analysis and enzyme-inhibitor interaction study of hydroxamate based HDAC8 inhibitors, J. Biomol. Struct. Dyn. 38 (2020), pp. 5513–5525. doi:10.1080/07391102.2019.1704881.
  • S.A. Amin, S. Banerjee, N. Adhikari, and T. Jha, Discriminations of active from inactive HDAC8 inhibitors Part II: Bayesian classification study to find molecular fingerprints, SAR QSAR Environ. Res. 31 (2020), pp. 245–260. doi:10.1080/1062936X.2020.1723136.
  • S.A. Amin, N. Adhikari, and T. Jha, Exploration of histone deacetylase 8 inhibitors through classification QSAR study: Part II, J. Mol. Struct. 1204 (2020), pp. 127529. doi:10.1016/j.molstruc.2019.127529.
  • S.A. Amin, N. Adhikari, and T. Jha, Diverse classes of HDAC8 inhibitors: In search of molecular fingerprints that regulate activity, Future Med. Chem. 10 (2018), pp. 1589–1602. doi:10.4155/fmc-2018-0005.
  • A. Kleinschek, C. Meyners, E. Digiorgio, C. Brancolini, and F.-J. Meyer-Almes, Potent and selective non-hydroxamate histone deacetylase 8 inhibitors, ChemMedChem 11 (2016), pp. 2598–2606. doi:10.1002/cmdc.201600528.
  • B. Wolff, N. Jänsch, W.O. Sugiarto, S. Frühschulz, M. Lang, R. Altintas, I. Oehme, and F.-J. Meyer-Almes, Synthesis and structure activity relationship of 1, 3-benzo-thiazine-2-thiones as selective HDAC8 inhibitors, Eur. J. Med. Chem. 184 (2019), pp. 111756. doi:10.1016/j.ejmech.2019.111756.
  • ChemDraw Ultra 5.0, Cambridge Soft Corporation, USA, 2010; software available at http://www.cambridgesoft.com.
  • Discovery Studio 3.0 (DS 3.0). Accelrys Inc., CA, USA, 2015; software available at http://www.accelrys.com.
  • S. Sanyal, S.A. Amin, N. Adhikari, and T. Jha, QSAR modelling on a series of arylsulfonamide-based hydroxamates as potent MMP-2 inhibitors, SAR QSAR Env. Res. 30 (2019), pp. 247–263. doi:10.1080/1062936X.2019.1588159.
  • TALETE srl. DRAGON, Milano, Italy, 2007; software available at http://www.talete.mi.it/.
  • The simple, user-friendly and reliable online standalone tools freely, available at http://dtclab.webs.com/software-tools. (Accessed on 20 Dec 2021).
  • I.V. Tetko, I. Sushko, A.K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oberg, R. Todeschini, D. Fourches, and A. Varnek, Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection, J. Chem. Inf. Model. 48 (2008), pp. 1733–1746. doi:10.1021/ci800151m.
  • S. Katoch, S.S. Chauhan, and V. Kumar, A review on genetic algorithm: Past, present, and future, Multimed. Tools Appl. 31 (2020), pp. 1–36.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer, New York, 2015.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • S.K. Baidya, S.A. Amin, S. Banerjee, N. Adhikari, and T. Jha, Structural exploration of arylsulfonamide-based ADAM17 inhibitors through validated comparative multi-QSAR modelling studies, J. Mol. Struct. 1185 (2019), pp. 128–142. doi:10.1016/j.molstruc.2019.02.081.
  • A. Nandy, K. Roy, and A. Saha, Structural exploration of PPARγ modulators through pharmacophore mapping, fragment-based design, docking, and molecular dynamics simulation analyses, Med. Chem. Res. 26 (2016), pp. 52–63.
  • N. Adhikari, A.K. Halder, C. Mondal, and T. Jha, Exploring structural requirements of aurone derivatives as antimalarials by validated DFT-based QSAR, HQSAR and COMFA–COMSIA approach, Med. Chem. Res. 22 (2013), pp. 6029–6045. doi:10.1007/s00044-013-0590-8.
  • SYBYL-X 2.0 Software, Tripos Inc., St. Louis. MO, USA, 2012; software available at http://www.certara.com.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Understanding chemico-biological interactions of glutamate MMP-2 inhibitors through rigorous alignment-dependent 3D-QSAR analyses, ChemistrySelect 2 (2017), pp. 7888–7898. doi:10.1002/slct.201701330.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comp. Chem. 31 (2010), pp. 455–461.
  • J. Eberhardt, D. Santos-Martins, A.F. Tillack, and S. Forli, AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings, J. Chem. Inf. Model. 61 (2021), pp. 3891–3898. doi:10.1021/acs.jcim.1c00203.
  • M. Muth, N. Jänsch, A. Kopranovic, A. Krämer, N. Wössner, M. Jung, F. Kirschhöfer, G. Brenner-Weiß, and F.-J. Meyer-Almes, Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine, Biochim. Biophys. Acta Gen. Subj. 1863 (2019), pp. 577–585. doi:10.1016/j.bbagen.2019.01.001.
  • H.J.C. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 1-2 (1995), pp. 43–56. doi:10.1016/0010-4655(95)00042-E.
  • Groningen machine for chemical simulations; software available at https://www.gromacs.org/.
  • R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, J. Mittal, M. Feig, and A.D. Mackerell Jr., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles, J. Chem. Theory Comput. 8 (2012), pp. 3257–3273. doi:10.1021/ct300400x.
  • CHARMM General Force Field (CGenFF); available at https://cgenff.umaryland.edu/ (Accessed on 5 Nov 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.