296
Views
1
CrossRef citations to date
0
Altmetric
Research Article

iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree

&
Pages 1-19 | Received 24 Oct 2022, Accepted 12 Dec 2022, Published online: 23 Dec 2022

References

  • B. Salehi, P. Zucca, M. Sharifi-Rad, R. Pezzani, S. Rajabi, W.N. Setzer, E.M. Varoni, M. Iriti, F. Kobarfard, and J. Sharifi-Rad, Phytotherapeutics in cancer invasion and metastasis, Phytother. Res. 2 (2018), pp. 1425–1449. doi:10.1002/ptr.6087.
  • P. Boyle and B. Levin, World Cancer Report 2008, IARC Press, France, 2008.
  • F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA-Cancer J. Clin. 68 (2018), pp. 394–424. doi:10.3322/caac.21492.
  • J. Thundimadathil, Cancer treatment using peptides: Current therapies and future prospects, J. Amino Acids 2012 (2012), pp. 967347. doi:10.1155/2012/967347.
  • E.P. Mitchell, Gastrointestinal toxicity of chemotherapeutic agents, Semin. Oncol. 33 (2006), pp. 106–120. doi:10.1053/j.seminoncol.2005.12.001.
  • K.M. Moxley and D.S. McMeekin, Endometrial carcinoma: A review of chemotherapy, drug resistance, and the search for new agents, Oncologist 15 (2010), pp. 1026–1033. doi:10.1634/theoncologist.2010-0087.
  • G.M. Suarez-Jimenez, A. Burgos-Hernandez, and J.M. Ezquerra-Brauer, Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals, Mar. Drugs 10 (2012), pp. 963–986. doi:10.3390/md10050963.
  • D.I. Chan, E.J. Prenner, and H.J. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action, Biochim. Biophys. Acta 1758 (2006), pp. 1184–1202. doi:10.1016/j.bbamem.2006.04.006.
  • N. Do, G. Weindl, L. Grohmann, M. Salwiczek, B. Koksch, H.C. Korting, and M. Schafer-Korting, Cationic membrane-active peptides -anticancer and antifungal activity as well as penetration into human skin, Exp. Dermatol. 23 (2014), pp. 326–331. doi:10.1111/exd.12384.
  • A. Adak, S. Mohapatra, P. Mondal, B. Jana, and S. Ghosh, Design of a novel microtubule targeted peptide vesicle for delivering different anticancer drugs, Chem. Commun. 52 (2016), pp. 7549–7552. doi:10.1039/C6CC01769J.
  • J. Jordan and G. Grassi, Natriuretic peptides in the cross-talk of human cardiovascular and metabolic regulation, J. Hypertens. 33 (2015), pp. 1139–1141. doi:10.1097/HJH.0000000000000575.
  • E. Hariton-Gazal, R. Feder, A. Mor, A. Graessmann, R. Brack-Werner, D. Jans, C. Gilon, and A. Loyter, Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals, Biochemistry 41 (2002), pp. 9208–9214. doi:10.1021/bi0201466.
  • N.S. Katheder, R. Khezri, F. O’Farrell, S.W. Schultz, A. Jain, M.M. Rahman, K.O. Schink, A. Brech, H. Stenmark, T.E. Rusten, N.S. Katheder, R. Khezri, F. O’Farrell, S.W. Schultz, A. Jain, M.M. Rahman, K.O. Schink, T.A. Theodossiou, T. Johansen, G. Juhász, D. Bilder, A. Brech, H. Stenmark, and T.E. Rusten, Microenvironmental autophagy promotes tumour growth, Nature 541 (2017), pp. 417–420. doi:10.1038/nature20815.
  • A. Tyagi, P. Kapoor, R. Kumar, K. Chaudhary, A. Gautam, and G.P.S. Raghava, In silico models for designing and discovering novel anticancer peptides, Sci. Rep. 3 (2013), pp. 2984. doi:10.1038/srep02984.
  • Z. Hajisharifi, M. Piryaiee, B.M. Mohammad, M. Behbahani, and H. Mohabatkar, Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating the irmutagenicity via Ames test, J. Theor. Biol. 341 (2014), pp. 34–40. doi:10.1016/j.jtbi.2013.08.037.
  • S. Vijayakumar and P. Lakshmi, ACPP: A web server for prediction and design of anti-cancer peptides, Int. J. Pept. Res. Ther. 21 (2015), pp. 99–106. doi:10.1007/s10989-014-9435-7.
  • W. Chen, H. Ding, P.M. Feng, H. Lin, and K.C. Chou, iACP: A sequence-based tool for identifying anticancer peptides, Oncotarget 7 (2016), pp. 16895. doi:10.18632/oncotarget.7815.
  • F.M. Li and X.Q. Wang, Identifying anticancer peptides by using improved hybrid compositions, Sci. Rep. 6 (2016), pp. 33910. doi:10.1038/srep33910.
  • S. Akbar, M. Hayat, M. Iqbal, and M.A. Jan, iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space, Artif. Intell. Med. 79 (2017), pp. 62–70. doi:10.1016/j.artmed.2017.06.008.
  • B. Manavalan, S. Basith, T.H. Shin, S. Choi, M.O. Kim, and G. Lee, MLACP: Machine-learning-based prediction of anticancer peptides, Oncotarget 8 (2017), pp. 77121. doi:10.18632/oncotarget.20365.
  • L.Y. Wei, C. Zhou, H.R. Chen, J.N. Song, and R. Su, ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides, Bioinformatics 34 (2018), pp. 4007–4016. doi:10.1093/bioinformatics/bty451.
  • L. Xu, G.M. Liang, L.J. Wang, and C.R. Liao, A novel hybrid sequence-based model for identifying anticancer peptides, Genes 9 (2018), pp. 158. doi:10.3390/genes9030158.
  • M. Kabir, M. Arif, S. Ahmad, Z. Ali, Z.N.K. Swati, and D.J. Yu, Intelligent computational method for discrimination of anticancer peptides by incorporating sequential and evolutionary profiles information, Chemom. Intell. Lab. 182 (2018), pp. 158–165. doi:10.1016/j.chemolab.2018.09.007.
  • N. Schaduangrat, C. Nantasenamat, V. Prachayasittikul, and W. Shoombuatong, ACPred: A computational tool for the prediction and analysis of anticancer peptides, Molecules 24 (2019), pp. 1973. doi:10.3390/molecules24101973.
  • V. Boopathi, S. Subramaniyam, A. Malik, G. Lee, B. Manavalan, and D.C. Yang, mACPpred: A support vector machine-based meta-predictor for identification of anticancer peptides, Int. J. Mol. Sci. 20 (2019), pp. 1964. doi:10.3390/ijms20081964.
  • L. Ge, J.G. Liu, Y.S. Zhang, and M. Dehmer, Identifying anticancer peptides by using a generalized chaos game representation, J. Math. Biol. 78 (2019), pp. 441–463. doi:10.1007/s00285-018-1279-x.
  • H.C. Yi, Z.H. You, X. Zhou, L. Cheng, X. Li, T.H. Jiang, and Z.H. Chen, ACP-DL: A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation, Mol. Thera. Nucl. Acids 17 (2019), pp. 1–9. doi:10.1016/j.omtn.2019.04.025.
  • B. Rao, C. Zhou, G.Y. Zhang, R. Su, and L.Y. Wei, ACPred-Fuse: Fusing multi-view information improves the prediction of anticancer peptides, Brief. Bioinform. 21 (2020), pp. 1846–1855. doi:10.1093/bib/bbz088.
  • T.Y. Zhao, Y. Hu, and T.Y. Zang, DRACP: A novel method for identification of anticancer peptides, BMC Bioinform. 21 (2020), pp. 559. doi:10.1186/s12859-020-03812-y.
  • L.Z. Yu, R.Y. Jing, F.J. Liu, J.S. Luo, and Y.Z. Li, DeepACP: A novel computational approach for accurate identification of anticancer peptides by deep learning algorithm, Mol. Thera. Nucl. Acids 22 (2020), pp. 862–870. doi:10.1016/j.omtn.2020.10.005.
  • N. Lane and I. Kahanda, DeepACPpred: A novel hybrid CNN-RNN architecture for predicting anti-cancer peptides, PACBB, 14th International Conference 1240 (L'Aquila, Italy), 2020, pp. 60–69.
  • X. Liang, F.Y. Li, J.X. Chen, J.L. Li, H. Wu, S.Q. Li, J.N. Song, and Q.Z. Liu, Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification, Brie. Bioinf. 22 (2021), pp. 1–17.
  • L.J. Cai, L. Wang, X.Z. Fu, and X.X. Zeng, Active semisupervised model for improving the identification of anticancer peptides, ACS Omega 6 (2021), pp. 23998–24008. doi:10.1021/acsomega.1c03132.
  • Y. Wan, Z. Wang, and T.Y. Lee, Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides, BMC Bioinf. 22 (2021), pp. 286. doi:10.1186/s12859-021-03965-4.
  • Z.B. Lv, F.F. Cui, Q. Zou, L.C. Zhang, and L. Xu, Anticancer peptides prediction with deep representation learning features, Brie. Bioinform. 22 (2021), pp. 1–14.
  • S. Ahmed, R. Muhammod, Z.H. Khan, S. Adilina, A. Sharm, S. Shatabda, and A. Dehzangi, ACP-MHCNN: An accurate multi-headed deep-convolutional neural network to predict anticancer peptides, Sci. Rep. 11 (2021), pp. 23676. doi:10.1038/s41598-021-02703-3.
  • H.F. You, L. Yu, S.W. Tian, X. Ma, Y. Xing, J.M. Song, and W.D. Wu, Anti-cancer peptide recognition based on grouped sequence and spatial dimension integrated networks, Interdiscip. Sci. 14 (2022), pp. 196–208. doi:10.1007/s12539-021-00481-0.
  • M. Arif, S. Ahmed, F. Ge, M. Kabir, Y.D. Khan, D.J. Yu, and M. Thafar, StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach, Chemometr. Intell. Lab. 220 (2022), pp. 104458. doi:10.1016/j.chemolab.2021.104458.
  • G.W. Feng, H. Yao, C.N. Li, R.Y. Liu, R.G. Huang, X.P. Fan, R.Q. Ge, and Q.G. Miao, ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides, Comput. Biol. Med. 145 (2022), pp. 105459. doi:10.1016/j.compbiomed.2022.105459.
  • A.Z.B. Aziz, A.M. Hasan Md, S. Ahmad, A. Mamun Md, J. Shin, and M.R. Hossain, iACP-MultiCNN: Multi-channel CNN based anticancer peptides identification, Anal. Biochem. 650 (2022), pp. 114707. doi:10.1016/j.ab.2022.114707.
  • W.R. Atchley, J.P. Zhao, A.D. Fernandes, and T.J. Drüke, Solving the protein sequence metric problem, P. Natl. Acad. Sci. USA. 102 (2005), pp. 6395–6400. doi:10.1073/pnas.0408677102.
  • K.C. Chou and H.B. Shen, Recent progresses in protein subcellular location prediction, Anal. Biochem. 370 (2007), pp. 1–16. doi:10.1016/j.ab.2007.07.006.
  • L.M. Fu, B.F. Niu, Z.W. Zhu, S.T. Wu, and W.Z. Li, CD-HIT: Accelerated for clustering the next generation sequencing data, Bioinformatics 28 (2012), pp. 3150–3152. doi:10.1093/bioinformatics/bts565.
  • Z. Ju and J.J. He, Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou’s PseAAC, J. Mol. Graph. Model. 76 (2017), pp. 356–363.
  • Z. Chen, P. Zhao, F.Y. Li, A. Leier, T.T. Marquez-Lago, Y.N. Wang, G.I. Webb, A.I. Smith, R.J. Daly, K.C. Chou, and J.N. Song, iFeature: A Python package and web server for features extraction and selection from protein and peptide sequences, Bioinformatics 34 (2018), pp. 2499–2502. doi:10.1093/bioinformatics/bty140.
  • M.H. Wang, X.W. Cui, S. Li, X.H. Yang, A.J. Ma, Y.S. Zhang, and B. Yu, DeepMal: Accurate prediction of protein malonylation sites by deep neural networks, Chemometr. Intell. Lab. 207 (2020), pp. 104175. doi:10.1016/j.chemolab.2020.104175.
  • Y. Zhu, C.Z. Jia, F.Y. Li, and J.N. Song, Inspector: A lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling, Anal. Biochem. 593 (2020), pp. 113592. doi:10.1016/j.ab.2020.113592.
  • S.L. Zhang and X.J. Li, Pep-CNN: An improved convolutional neural network for predicting therapeutic peptides, Chemometr. Intell. Lab. 221 (2022), pp. 104490. doi:10.1016/j.chemolab.2022.104490.
  • X.X. Zeng, Y.L. Liao, Y.S. Liu, and Q. Zou, Prediction and validation of disease genes using HeteSim Scores, IEEE ACM T. CompuT. Bi. 14 (2017), pp. 687–695.
  • J. Song, J.J. Tang, and F. Guo, Identification of inhibitors of MMPS enzymes via a novel computational approach, Int. J. of Biol. Sci. 14 (2018), pp. 863–871.
  • L.Y. He and S.P. Chen, A new approach to quantify power-law cross-correlation and its application to commodity markets, Physica A 390 (2011), pp. 3806–3814. doi:10.1016/j.physa.2011.06.013.
  • A. Carbone, Detrending moving average algorithm: A brief review, Sci. Technol. Human. 2009 (2009), pp. 691–696.
  • J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat. 29 (2001), pp. 1189–1232. doi:10.1214/aos/1013203451.
  • N. Alexey and K. Alois, Gradient boosting machines, a tutorial, Front. Neurorobotics 7 (2013), pp. 1662–5218.
  • P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (2006), pp. 3–42. doi:10.1007/s10994-006-6226-1.
  • S. Basith, B. Manavalan, T.H. Shin, and G. Lee, iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree, Comput. Struct. Biotec. 16 (2018), pp. 412–420. doi:10.1016/j.csbj.2018.10.007.
  • B. Manavalan, S. Basith, T.H. Shin, L. Wei, and G. Lee, mAHTPred: A sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation, Bioinformatics 35 (2019), pp. 2757–2765. doi:10.1093/bioinformatics/bty1047.
  • B. Liu, K. Li, D.S. Huang, and K.C. Chou, iEnhancer-EL: Identifying enhancers and their strength with ensemble learning approach, Bioinformatics 34 (2018), pp. 3835–3842. doi:10.1093/bioinformatics/bty458.
  • H.Y. Shi and S.L. Zhang, Accurate prediction of anti-hypertensive peptides based on convolutional neural network and gated recurrent unit, Interdiscip. Sci. 14 (2022), pp. 879–894. doi:10.1007/s12539-022-00521-3.
  • T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (2006), pp. 861–874. doi:10.1016/j.patrec.2005.10.010.
  • V. Vacic, L.M. Iakoucheva, and P. Radivojac, Two Sample Logo: A graphical representation of the differences between two sets of sequence alignments, Bioinformatics 22 (2006), pp. 1536–1537. doi:10.1093/bioinformatics/btl151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.