211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A multiple linear regression approach to the estimation of carboxylic acid ester and lactone alkaline hydrolysis rate constants

ORCID Icon, ORCID Icon &
Pages 183-210 | Received 16 Jan 2023, Accepted 25 Feb 2023, Published online: 23 Mar 2023

References

  • T. Mill, W. Haag, P. Penwell, T. Pettit, and H. Johnson, Environmental fate and exposure studies development of a PC-SAR for hydrolysis: Esters, alkyl halides and epoxides. EPA contract No. 68- 02-4254,68- 02-4254, SRI International, Menlo Park, CA, 1987.
  • H. Drossman, H. Johnson, and T. Mill, Structure activity relationships for environmental processes 1: Hydrolysis of esters and carbamates, Chemosphere 17 (1988), pp. 1509–1530. doi:10.1016/0045-6535(88)90204-4.
  • W.M. Meylan and P.H. Howard, Phosphorus Compound Hydrolysis Update for the HYDROWIN Program, Syracuse Research Corporation, Syracuse, NY, USA, 2007.
  • S.H. Hilal, S.W. Karickhoff, L.A. Carreira, and B.P. Shrestha, Estimation of carboxylic acid ester hydrolysis rate constants, QSAR Comb. Sci. 22 (2003), pp. 917–925. doi:10.1002/qsar.200330836.
  • M.L. Card, V. Gomez-Alvarez, W.-H. Lee, D.G. Lynch, N.S. Orentas, M.T. Lee, E.M. Wong, and R.S. Boethling, History of EPI suite™ and future perspectives on chemical property estimation in US toxic substances control act new chemical risk assessments, Environ. Sci. Process. Impacts 19 (2017), pp. 203–212. doi:10.1039/c7em00064b.
  • U.S. EPA, Estimation Programs Interface Suite™ for Microsoft® Windows, V 4.11, U.S. Environmental Protection Agency, Washington, DC, USA, 2017. software available at https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.
  • P.M. Khan, A. Lombardo, E. Benfenati, and K. Roy, First report on chemometric modeling of hydrolysis half-lives of organic chemicals, Environ. Sci. Pollut. Res. 28 (2021), pp. 1627–1642. doi:10.1007/s11356-020-10500-0.
  • A.A. Toropov, A.P. Toropova, A. Lombardo, A. Roncaglioni, G.J. Lavado, and E. Benfenati, The Monte Carlo method to build up models of the hydrolysis half-lives of organic compounds, SAR QSAR Environ. Res. 32 (2021), pp. 463–471. doi:10.1080/1062936X.2021.1914156.
  • P.-H. Chiu, Y.-L. Yang, H.-K. Tsao, and Y.-J. Sheng, Deep learning for predictions of hydrolysis rates and conditional molecular design of esters, J. Taiwan Inst. Chem. Eng. 126 (2021), pp. 1–13. doi:10.1016/j.jtice.2021.06.045.
  • U.A. Chaudry and P.L.A. Popelier, Ester hydrolysis rate constant prediction from quantum topological molecular similarity descriptors, J. Phys. Chem. A 107 (2003), pp. 4578–4582. doi:10.1021/jp034272a.
  • T. Xu, J. Chen, X. Chen, H. Xie, Z. Wang, D. Xia, W. Tang, and H.-B. Xie, Prediction models on pKa and base-catalyzed hydrolysis kinetics of parabens: Experimental and quantum chemical studies, Environ. Sci. Technol. 55 (2021), pp. 6022–6031. doi:10.1021/acs.est.0c06891.
  • C. Tebes-Stevens, J.M. Patel, W.J. Jones, and E.J. Weber, Prediction of hydrolysis products of organic chemicals under environmental pH conditions, Environ. Sci. Technol. 51 (2017), pp. 5008–5016. doi:10.1021/acs.est.6b05412.
  • R. Gómez-Bombarelli, E. Calle, and J. Casado, Mechanisms of lactone hydrolysis in neutral and alkaline conditions, J. Org. Chem. 78 (2013), pp. 6868–6879. doi:10.1021/jo400258w.
  • J.E. Douglas, G. Campbell, and D.C. Wigfield, Studies on the BAL2 mechanism for ester hydrolysis, Can. J. Chem. 71 (1993), pp. 1841–1844. doi:10.1139/v93-230.
  • L.R.C. Barclay, N.D. Hall, and G.A. Cooke, Mechanism of alkaline hydrolysis of hindered aromatic esters, the BAL2 mechanism, Can. J. Chem. 40 (1962), pp. 1981–1985. doi:10.1139/v62-304.
  • R. Huisgen and H. Ott, Die konfiguration der carbonestergruppe und die sondereigenschaften der lactone, Tetrahedron 6 (1959), pp. 253–267. doi:10.1016/0040-4020(59)80006-5.
  • E. Valente, J.R.B. Gomes, R. Moreira, and J. Iley, Kinetics and mechanism of hydrolysis of n-acyloxymethyl derivatives of azetidin-2-one, J. Org. Chem. 69 (2004), pp. 3359–3367. doi:10.1021/jo0358123.
  • G.M. Blackburn and H.L.H. Dodds, Strain effects in acyl transfer reactions. Part III. Hydroxide and buffer-catalysed hydrolysis of small and medium ring lactones, J. Chem. Soc., Perkin Trans. 2 (1974), pp. 377–382. doi:10.1039/p29740000377.
  • E. Kaiser and F. Kézdy, Hydrolysis of cyclic esters, in Progress in Bioorganic Chemistry, E. Kaiser and F. Kézdy, eds., Wiley, New York, 1976, pp. 239–267.
  • P.S. Tobias and F.J. Kézdy, Alkaline hydrolysis of 5-nitrocoumaranone. Method for determining the intermediacy of carbanions in the hydrolysis of esters with labile .alpha. protons, J. Am. Chem. Soc. 91 (1969), pp. 5171–5173. doi:10.1021/ja01046a047.
  • G. Cevasco, D. Vigo, and S. Thea, The alkaline hydrolysis of aryl (2E)-3-(4‘-hydroxyphenylazo)propenoates. A Kinetic study, J. Org. Chem. 66 (2001), pp. 7685–7690. doi:10.1021/jo015795m.
  • G. Cevasco, D. Vigo, and S. Thea, Occurrence of an elongated p-oxo ketene intermediate in the dissociative alkaline hydrolysis of aryl (2E,4E)-5-(4‘-hydroxyphenyl)pentadienoates, J. Org. Chem. 65 (2000), pp. 7833–7838. doi:10.1021/jo0008439.
  • B. Holmquist and T.C. Bruice, Carbonion (ElcB)mechanism of ester hydrolysis. I. Hydrolysis of malonate esters, J. Am. Chem. Soc. 91 (1969), pp. 2993–3002. doi:10.1021/ja01039a029.
  • H.C. Brown, J.H. Brewster, and H. Shechter, An interpretation of the chemical behavior of five- and six-membered ring compounds1, J. Am. Chem. Soc. 76 (1954), pp. 467–474. doi:10.1021/ja01631a041.
  • A. Zlatkis and H.M. Liebich, Profile of volatile metabolites in human urine, Clin. Chem. 17 (1971), pp. 592–594. doi:10.1093/clinchem/17.7.592.
  • T.-H. Chan, P.-T. Chen, H.-H. Chang, M.-Y. Lai, M. Hayashi, J.-K. Wang, and Y.-L. Wang, Autocatalytic reaction in hydrolysis of difructose anhydride III, J. Phys. Chem. A. 115 (2011), pp. 10309–10314. doi:10.1021/jp206494r.
  • M.H. Gault, J.D. Charles, D.L. Sugden, and D.C. Kepkay, Hydrolysis of digoxin by acid, J. Pharm. Pharmacol. 29 (2011), pp. 27–32. doi:10.1111/j.2042-7158.1977.tb11232.x.
  • A. Alhifthi and S.J. Williams, Unimolecular, bimolecular, and intramolecular hydrolysis mechanisms of 4-nitrophenyl β-d-glucopyranoside, J. Org. Chem. 86 (2021), pp. 9530–9539. doi:10.1021/acs.joc.1c00836.
  • M. Sójka, M. Janowski, and K. Grzelak-Błaszczyk, Stability and transformations of raspberry (Rubus idaeus L.) ellagitannins in aqueous solutions, Eur. Food Res. Technol. 245 (2019), pp. 1113–1122. doi:10.1007/s00217-018-3212-3.
  • A. Tuominen and T. Sundman, Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD–ESI/QTOF/MS, Phytochem. Anal. 24 (2013), pp. 424–435. doi:10.1002/pca.2456.
  • J. Macierzyński, M. Sójka, M. Kosmala, and E. Karlińska, Transformation of oligomeric ellagitannins, typical for Rubus and Fragaria genus, during strong acid hydrolysis, J. Agric. Food Chem. 68 (2020), pp. 8212–8222. doi:10.1021/acs.jafc.0c02674.
  • R. Adams and T.R. Govindachari, Senecio alkaloids: The isolation of senecionine from Senecio cineraria and some observations on the structure of senecionine, J. Am. Chem. Soc. 71 (1949), pp. 1953–1956. doi:10.1021/ja01174a014.
  • K. Niemelä, Oxidative and non-oxidative alkali-catalysed degradation of L-ascorbic acid, J. Chromatogr. A. 399 (1987), pp. 235–243. doi:10.1016/S0021-9673(00)96125-9.
  • A. Serpen and V. Gökmen, Reversible degradation kinetics of ascorbic acid under reducing and oxidizing conditions, Food Chem. 104 (2007), pp. 721–725. doi:10.1016/j.foodchem.2006.11.073.
  • I. Kuhr, Decomposition of gibberellic acid in aqueous solutions, Folia Microbiol. 7 (1962), pp. 358. doi:10.1007/BF02928124.
  • Y. Aso, Y. Hayashi, S. Yoshioka, Y. Takeda, Y. Kita, Y. Nishimura, and Y. Arata, Epimerization and hydrolysis of etoposide analogues in aqueous solution, Chem. Pharm. Bull. 37 (1989), pp. 422–424. doi:10.1248/cpb.37.422.
  • C.M. Won, epimerization and hydrolysis of dalvastatin, a new hydroxymethylglutaryl coenzyme a (HMG-CoA) reductase inhibitor, Pharm. Res. 11 (1994), pp. 165–170. doi:10.1023/A:1018978602141.
  • E.S.P.I.A. Neville, F.B. Hasan, and I.C.P. Smith, Stereoselective epimerization of pilocarpine in aqueous solution as determined by 13C nuclear magnetic resonance spectroscopy, Can. J. Chem. 54 (1976), pp. 2094–2100. doi:10.1139/v76-300.
  • I. Cagnasso, G. Tonachini, S. Berto, A. Giacomino, L. Mandrile, A. Maranzana, and F. Durbiano, Comprehensive study on the degradation of ochratoxin A in water by spectroscopic techniques and DFT calculations, RSC Adv. 9 (2019), pp. 19844–19854. doi:10.1039/C9RA02086A.
  • A.B. Trivedi, E. Doi, and N. Kitabatake, Detoxification of ochratoxin A on heating under acidic and alkaline conditions, Biosci. Biotechnol. Biochem. 56 (1992), pp. 741–745. doi:10.1271/bbb.56.741.
  • A. Al-Maaieh and D.R. Flanagan, Salt effects on an ion–molecule reaction—hydroxide-catalyzed hydrolysis of benzocaine, Pharm. Res. 23 (2006), pp. 589–594. doi:10.1007/s11095-005-9434-7.
  • H.B. Ahmad, M.A. Malana, and M.N. Yousaf, Comparative kinetic studies on the alkaline hydrolysis of halogen substituted isocoumarins, Turkish J. Chem. 34 (2010), pp. 381–386.
  • OECD, Test No. 111: Hydrolysis as a Function of pH, OECD Guidelines for the Testing of Chemicals, Section 1. OECD Publishing, Paris, 2004. doi:10.1787/9789264069701-en.
  • J.J. Ellington, J. Stancil, E. Frank, and W.D. Payne, Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land: Volume 1. EPA/600/3-86/043, U. S. Environmental Protection Agency (U.S. EPA), Athens, GA, 1987.
  • J.A. Manso, M.T. Pérez-Prior, M. Del Pilar García-Santos, E. Calle, and J. Casado, Solvent effects on the enthalpy and entropy of activation for the hydrolysis of β-lactones, J. Solut. Chem. 37 (2008), pp. 451–457. doi:10.1007/s10953-008-9250-x.
  • E.A. Abu-Gharib, R. El-Khatib, L.A.E. Nassr, and A.M. Abu-Dief, Hydrophobicity and kinetic inspection of hydroxide ion attack on some chromen-2-one laser dyes in binary aqueous–methanol and aqueous–acetone mixtures: Initial state-transition state analysis, J. King Saud Univ. Sci. 27 (2015), pp. 54–62. doi:10.1016/j.jksus.2014.02.002.
  • E.A. Abu-Gharib, R.M. EL-Khatib, L.A.E. Nassr, and A.M. Abu-Dief, Initial state and transition state contributions to reactivity trends of base-catalyzed hydrolysis of some nitro chromen-2-one derivatives, Z. Phys. Chem. 225 (2011), pp. 235–248. doi:10.1524/zpch.2011.0043.
  • E.A. Abu-Gharib, R.M. El-Khatib, L.A.E. Nassr, and A.M. Abu-Dief, Kinetics, reactivity, initial-transition state analysis and thermodynamic parameters of base-catalyzed hydrolysis of coumalic acid in solvents with different polarities, Arab. J. Chem. 10 (2017), pp. S988–S995. doi:10.1016/j.arabjc.2012.12.040.
  • A. Abu-Gharib Ezz, R.M. EL-Khatib, A.E. Nassr Lobna, and M. Abu-Dief Ahmed, Kinetics of base hydrolysis of some chromen-2-one indicator dyes in different solvents at different temperatures, J. Korean Chem. Soc. 55 (2011), pp. 346–353. doi:10.5012/jkcs.2011.55.3.346.
  • K. Mansouri, T. Ringsted, D. Ballabio, R. Todeschini, and V. Consonni, Quantitative structure–activity relationship models for ready biodegradability of chemicals, J. Chem. Inf. Model. 53 (2013), pp. 867–878. doi:10.1021/ci4000213.
  • J.P. Idoux and J.O. Schreck, Proximity effects. Part 4. Alkaline hydrolysis of methyl carboxylates, alkyl acetates, and alkyl carboxylates. Steric effects in carboxylic acid derivatives and related systems, J. Org. Chem. 43 (1978), pp. 4002–4006. doi:10.1021/jo00415a003.
  • D. Nalbantova, D. Cheshmedzhieva, B. Hadjieva, S. Ilieva, and B. Galabov, Reactivity of phenyl N-phenylcarbamates in the alkaline hydrolysis reaction, J. Phys. Org. Chem. 24 (2011), pp. 1166–1171. doi:10.1002/poc.1841.
  • N. Nikolova and J. Jaworska, Approaches to measure chemical similarity – A review, QSAR Comb. Sci. 22 (2003), pp. 1006–1026. doi:10.1002/qsar.200330831.
  • T.M. Nolte and W.J.G.M. Peijnenburg, Use of quantum-chemical descriptors to analyse reaction rate constants between organic chemicals and superoxide/hydroperoxyl (O2•−/HO2•), Free Radic. Res. 52 (2018), pp. 1118–1131. doi:10.1080/10715762.2018.1529867.
  • C.L. Tebes-Stevens and W.J. Jones, Estimation of microbial reductive transformation rates for chlorinated benzenes and phenols using a quantitative structure–activity relationship approach, Environ. Toxicol. Chem. 23 (2004), pp. 1600–1609. doi:10.1897/03-282.
  • A.C. Lee and G.M. Crippen, Predicting pKa, J. Chem. Inf. Model 49 (2009), pp. 2013–2033. doi:10.1021/ci900209w.
  • J. Gasteiger and M. Marsili, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges, Tetrahedron 36 (1980), pp. 3219–3228. doi:10.1016/0040-4020(80)80168-2.
  • A.E. Alexander and E.K. Rideal, Reaction kinetics in films. The hydrolysis of long-chain esters, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 163 (1937), pp. 70–89.
  • A.E. Alexander, J.H. Schulman, and E.K. Rideal, Orientation in films of long-chain esters, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 161 (1937), pp. 115–127.
  • S.S. Kolmar and C.M. Grulke, The effect of noise on the predictive limit of QSAR models, J. Cheminform. 13 (2021), pp. 92. doi:10.1186/s13321-021-00571-7.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • R.W. Kennard and L.A. Stone, Computer aided design of experiments, Technometrics 11 (1969), pp. 137–148. doi:10.1080/00401706.1969.10490666.
  • S. Kar, K. Roy, and J. Leszczynski, On error measures for validation and uncertainty estimation of predictive QSAR models, in Computational Nanotoxicology: Challenges and Perspectives, 1st ed., A. Gajewicz and T. Puzyn, eds., Jenny Stanford Publishing, New York, 2019, pp. 437–493.
  • R.N. Fadilla, F. Rusydi, N.D. Aisyah, V. Khoirunisa, H.K. Dipojono, F. Ahmad, M. Mudasir, and I. Puspitasari, A Density-functional study of the conformational preference of acetylcholine in the neutral hydrolysis, Molecules 25 (2020). doi:10.3390/molecules25030670.
  • S. Nicholson and P.J. Taylor, Entropic strain and conformational preference in the hydrolysis of some N-alkyl-6-acetylaminotriazinediones, J. Chem. Soc. Perkin Trans. 2 (1997), pp. 1771–1782. doi:10.1039/a700736a.
  • P. Imming, B. Klar, and D. Dix, Hydrolytic stability versus ring size in lactams: Implications for the development of lactam antibiotics and other serine protease inhibitors, J. Med. Chem. 43 (2000), pp. 4328–4331. doi:10.1021/jm000921k.
  • Z. Zhang, F. Jin, Z. Wu, J. Jin, F. Li, Y. Wang, Z. Wang, S. Tang, C. Wu, and Y. Wang, O-acylation of chitosan nanofibers by short-chain and long-chain fatty acids, Carbohydr. Polym. 177 (2017), pp. 203–209. doi:10.1016/j.carbpol.2017.08.132.
  • B. Bolotin, R. Poponova, L. Zeryukina, and M. Loseva, Hydrolysis of 2-aryl-4h-3, 1-benzoxazin-4-ones, Chem. Heterocycl. Compd. 12 (1976), pp. 538–541. doi:10.1007/BF00470107.
  • A.J. Salter-Blanc, E.J. Bylaska, J.J. Ritchie, and P.G. Tratnyek, Mechanisms and kinetics of alkaline hydrolysis of the energetic nitroaromatic compounds 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN), Environ. Sci. Technol. 47 (2013), pp. 6790–6798. doi:10.1021/es304461t.
  • S.A. Todey, A.M. Fallon, and W.A. Arnold, Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity, Environ. Toxicol. Chem. 37 (2018), pp. 2797–2809. doi:10.1002/etc.4256.
  • C. Christodoulatos, T.-L. Su, and A. Koutsospyros, Kinetics of the alkaline hydrolysis of nitrocellulose, Water Environ. Res. 73 (2001), pp. 185–191. doi:10.2175/106143001X138840.
  • M. Emmrich, Kinetics of the alkaline hydrolysis of important nitroaromatic co-contaminants of 2,4,6-trinitrotoluene in highly contaminated soils, Environ. Sci. Technol. 35 (2001), pp. 874–877. doi:10.1021/es0014990.
  • L.K. Sviatenko, L. Gorb, F.C. Hill, D. Leszczynska, M.K. Shukla, S.I. Okovytyy, D. Hovorun, and J. Leszczynski, In silico alkaline hydrolysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Density functional theory investigation, Environ. Sci. Technol. 50 (2016), pp. 10039–10046. doi:10.1021/acs.est.5b06130.
  • M. Tichý and M. Rucki, Validation of QSAR models for legislative purposes, Interdiscip. Toxicol. 2 (2009), pp. 184–186. doi:10.2478/v10102-009-0014-2.
  • T. Xu, J. Chen, Z. Wang, W. Tang, D. Xia, Z. Fu, and H. Xie, Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation, Environ. Sci. Technol. 53 (2019), pp. 5828–5837. doi:10.1021/acs.est.9b00574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.