131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of two combined series of triketones with HPPD inhibitory activity by molecular modelling

, &
Pages 231-246 | Received 17 Jan 2023, Accepted 13 Mar 2023, Published online: 23 Mar 2023

References

  • R. Beaudegnies, A.J.F. Edmunds, T.E.M. Fraser, R.G. Hall, T.R. Hawkes, G. Mitchell, J. Schaetzer, S. Wendeborn, and J. Wibley, Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors – A review of the triketone chemistry story from a Syngenta perspective, Bioorg. Med. Chem. 17 (2009), pp. 4134–4152. doi:10.1016/j.bmc.2009.03.015.
  • G. Mitchell, D.W. Bartlett, T.E.M. Fraser, T.R. Hawkes, D.C. Holt, J.K. Townson, and R.A. Wichert, Mesotrione: A new selective herbicide for use in maize, Pest. Manag. Sci. 57 (2001), pp. 120–128. doi:10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E.
  • Y. Fu, S.Q. Zhang, Y.X. Liu, J.Y. Wang, S. Gao, L.X. Zhao, and F. Ye, Design, synthesis, SAR and molecular docking of novel green niacin-triketone HPPD inhibitor, Ind. Crops Prod. 137 (2019), pp. 566–575. doi:10.1016/j.indcrop.2019.05.070.
  • G.R. Moran, 4-Hydroxyphenylpyruvate dioxygenase, Arch. Biochem. Biophys. 433 (2005), pp. 117–128. doi:10.1016/j.abb.2004.08.015.
  • D. DellaPenna and B. Pogson, Vitamin synthesis in plants: Tocopherols and carotenoids, Annu. Rev. Plant Biol. 57 (2006), pp. 711–738. doi:10.1146/annurev.arplant.56.032604.144301.
  • S.R. O’Brien, A.S. Davis, and D.E. Riechers, Quantifying resistance to isoxaflutole and mesotrione and investigating their interaction with metribuzin post in waterhemp (Amaranthus tuberculatus), Weed Sci. 66 (2018), pp. 586–594. doi:10.1017/wsc.2018.36.
  • K.E. Jacobs Jr., C.J. Butts-Wilmsmeyer, R. Ma, S.R. O’Brien, and D.E. Riechers, Association between metabolic resistances to atrazine and mesotrione in a multiple-resistant waterhemp (Amaranthus tuberculatus) population, Weed Sci. 68 (2020), pp. 358–366. doi:10.1017/wsc.2020.31.
  • P.S. Chahal, M. Jugulam, and A. Jhala, Basis of atrazine and mesotrione synergism for controlling atrazine- and hppd inhibitor-resistant palmer amaranth, Agron. J. 111 (2019), pp. 3265–3273. doi:10.2134/agronj2019.01.0037.
  • S.S. Kaundun, S.-J. Hutchings, R.P. Dale, A. Howell, J.A. Morris, V.C. Kramer, V.K. Shivrain, and E. Mcindoe, Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA, Plos One 12 (2017), pp. e0180095. doi:10.1371/journal.pone.0180095.
  • M.C. Oliveira, T.A. Gaines, A.J. Jhala, and S.Z. Knezevic, Inheritance of mesotrione resistance in an Amaranthus tuberculatus (var. rudis) population from Nebraska, USA, Front. Plant. Sci. 9 (2018), pp. 60. doi:10.3389/fpls.2018.00060.
  • D.W. Wang, H.-Y. Lin, R.-J. Cao, T. Chen, F.-X. Wu, G.-F. Hao, Q. Chen, W.-C. Yang, and G.-F. Yang, Synthesis and herbicidal activity of triketone−quinoline hybrids as novel 4‑hydroxyphenylpyruvate dioxygenase inhibitors, J Agric. Food Chem. 63 (2015), pp. 5587–5596. doi:10.1021/acs.jafc.5b01530.
  • D.W. Wang, H.-Y. Lin, B. He, F.-X. Wu, T. Chen, Q. Chen, W.-C. Yang, and G.-F. Yang, An efficient one-pot synthesis of 2‑(aryloxyacetyl)cyclohexane-1,3-diones as herbicidal 4‑hydroxyphenylpyruvate dioxygenase inhibitors, J Agric. Food Chem. 64 (2016), pp. 8986–8993. doi:10.1021/acs.jafc.6b04110.
  • M.R. Freitas, S.J. Barigye, and M.P. Freitas, Coloured chemical image-based models for the prediction of soil sorption of herbicides, RSC Adv. 5 (2015), pp. 7547–7553. doi:10.1039/C4RA12070A.
  • S.J. Barigye, M.H. Duarte, C.A. Nunes, and M.P. Freitas, MIA-plot: A graphical tool for viewing descriptor contributions in MIA-QSAR, RSC Adv. 6 (2016), pp. 49604–49612. doi:10.1039/C6RA09593C.
  • R.D. Dennington, T.A. Keith, and M.J. Millam, GaussView 5.0, Wallingford, CT, 2008.
  • P. Geladi and B.R. Kowalski, Partial least-squares regression: A tutorial, Anal. Chim. Acta 185 (1986), pp. 1–17. doi:10.1016/0003-2670(86)80028-9.
  • I. Mitra, A. Saha, and K. Roy, Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants, Mol. Simul. 36 (2010), pp. 1067–1079. doi:10.1080/08927022.2010.503326.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678. doi:10.1021/ci900115y.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082. doi:10.1002/jcc.23231.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inf. 29 (2010), pp. 476–488. doi:10.1002/minf.201000061.
  • C.A. Nunes, M.P. Freitas, A.C.M. Pinheiro, and S.C. Bastos, Chemoface: A novel free user-friendly interface for chemometrics, J. Braz. Chem. Soc. 23 (2012), pp. 2003–2010. doi:10.1590/S0103-50532012005000073.
  • R.Y. Qu, J.X. Nan, Y.C. Yan, Q. Chen, F. Ndikuryayo, X.F. Wei, W.C. Yang, H.Y. Lin, and G.F. Yang, Structure-guided discovery of silicon-containing subnanomolar inhibitor of hydroxyphenylpyruvate dioxygenase as a potential herbicide, J. Agric. Food Chem. 69 (2021), pp. 459–473. doi:10.1021/acs.jafc.0c03844.
  • J. Wang, P. Cieplak, and P.A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21 (2000), pp. 1157–1174. doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • R. Thomsen and M.H. Christensen, MolDock: A new technique for high-accuracy molecular docking, J. Med. Chem. 49 (2006), pp. 3315–3321. doi:10.1021/jm051197e.
  • D. Van der Spoel, A.R. Van Buuren, E. Apol, P.J. Meulenhoff, D.P. Tieleman, A.L.T.M. Sijbers, B. Hess, A.K. Feentra, E. Lindahl, R. Van Drunen, and H.J.C. Berendsen, GROMACS User Manual Version 3.0, Department of Biophysical Chemistry of University of Groningen, Groningen, 2001.
  • I. Soteras Gutierrez, F.-Y. Lin, K. Vanommeslaeghe, J.A. Lemkul, K.A. Armacost, C.L. Brooks III, and A.D. MacKerell Jr., Parametrization of halogen bonds in the CHARMM36 general force field: Improved treatment of ligand-protein interactions, Bioorg. Med. Chem. 24 (2016), pp. 4812–4825. doi:10.1016/j.bmc.2016.06.034.
  • R. Todeschini, V. Consonni, D. Ballabio, and F. Grisoni, Chemometrics for QSAR modeling, in Comprehensive Chemometrics, S.D. Brown, R. Tauler, and B. Walczak, eds., Elsevier, Amsterdam, 2020, pp. 599–634.
  • F.A. Martins, J.K. Daré, and M.P. Freitas, Computer-assisted proposition of promising aryloxyacetic acid derivatives as HPPD inhibitors, J. Agric. Food Chem. 70 (2022), pp. 8986–8993. doi:10.1021/acs.jafc.2c02954.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug. Deliv. Rev. 23 (1997), pp. 4–25. doi:10.1016/S0169-409X(96)00423-1.
  • P. Ertl, B. Rohde, and P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport propertie, J. Med. Chem. 43 (2000), pp. 3714–3717. doi:10.1021/jm000942e.
  • N.S. Pagadala, K. Syed, and J. Tuszynski, Software for molecular docking: A review, Biophys. Rev. 9 (2017), pp. 91–102. doi:10.1007/s12551-016-0247-1.
  • P.G. Bolhuis, Sampling kinetic protein folding pathways using all-atom models, in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, M. Ferrario, G. Ciccotti, and K. Binder, eds., Lecture Notes in Physics 703. Springer, Verlag Berlin Heidelberg, 2006, pp. 393–433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.