213
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A QSAR study to predict the survival motor neuron promoter activity of candidate diaminoquinazoline derivatives for the potential treatment of spinal muscular atrophy

, & ORCID Icon
Pages 247-266 | Received 05 Jan 2023, Accepted 04 Apr 2023, Published online: 26 Apr 2023

References

  • G.E. Opera, S. Kröber, M.L. McWhorter, W. Rossoll, S. Müller, M. Krawczak, G.J. Bassell, C.E. Beattie, and B. Wirth, Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy, Science 320 (2008), pp. 524–527. doi:10.1126/science.1155085.
  • R.S. Anderton and F.L. Mastaglia, Advances and challenges in developing a therapy for spinal muscular atrophy, Expert Rev. Neurother. 15 (2015), pp. 895–908. doi:10.1586/14737175.2015.1059757.
  • C. Madocsai, S.R. Lim, T. Geib, B.J. Lam, and K.J. Hertel, Correction of SMN2 pre-mRNA splicing by antisense U7 small nuclear RNAs, Mol. Ther. 12 (2005), pp. 1013–1022. doi:10.1016/j.ymthe.2005.08.022.
  • S. Lefebvre, L. Bürglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, D.L. Paslier, J. Frezal, D. Cohen, J. Weissenbach, A. Munnich, and J. Melki, Identification and characterization of a spinal muscular atrophy-determining gene, Cell 80 (1995), pp. 155–165. doi:10.1016/0092-8674(95)90460-3.
  • M.D. Howell, N.N. Singh, and R.N. Singh, Advances in therapeutic development for spinal muscular atrophy, Future Med. Chem. 6 (2014), pp. 1081–1099. doi:10.4155/fmc.14.63.
  • C.F. Rochette, N. Gilbert, and L.R. Simard, SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens, Hum. Genet. 108 (2001), pp. 255–266. doi:10.1007/s004390100473.
  • M. Calucho, S. Bernal, L. Alías, F. March, A. Venceslá, F.J. Rodríguez-Álvarez, E. Aller, R.M. Fernández, S. Borrego, J.M. Millán, C. Hernández-Chico, I. Cuscó, P. Fuentes-Prior, and E.F. Tizzano, Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2,834 reported cases, Neuromuscular Disord. 28 (2018), pp. 208–215. doi:10.1016/j.nmd.2018.01.003.
  • D.C. Schorling, A. Pechmann, and J. Kirschner, Advances in treatment of spinal muscular atrophy, Neuromuscular Disord. 7 (2020), pp. 1–13. doi:10.3233/JND-190424.
  • J. Thurmond, M.E.R. Butchbach, M. Palomo, B. Pease, M. Rao, L. Bedell, M. Pai, G. Keyvan, R. Mishra, M. Haraldsson, T. Andresson, G. Bragason, M. Thosteinsdottir, J.M. Bjornsson, D.D. Coovert, A.H.M. Burghes, M.E. Gurney, and J. Singh, Synthesis and biological evaluation of novel 2,4-diaminoquinazoline derivatives as SMN2 promoter activators for the potential treatment of SMA, Med. Chem. 51 (2008), pp. 449–469. doi:10.1021/jm061475p.
  • F. Farooq, S. Balabanian, X. Liu, M. Holcik, and A. MacKenzie, p38 mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR, Hum. Mol. Genet. 18 (2009), pp. 4035–4045. doi:10.1093/hmg/ddp352.
  • M.A. Waldrop and S.J. Kolb, Current treatment options in neurology-SMA therapeutics, Curr. Treat. Options Neurol. 21 (2019), pp. 1–11. doi:10.1007/s11940-019-0568-z.
  • A.N. Calder, E.J. Androphy, and K.J. Hodgetts, Small molecules in development for the treatment of spinal muscular atrophy, Med. Chem. 59 (2016), pp. 10067–10083. doi:10.1021/acs.jmedchem.6b00670.
  • J. Jarecki, X. Chen, A. Bernardino, D.D. Coovert, M. Whitney, A. Burghes, J. Stack, and B.A. Pollok, Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: Early leads towards a therapeutic for spinal muscular atrophy, Hum. Mol. Genet. 14 (2005), pp. 2003–2018. doi:10.1093/hmg/ddi205.
  • J.P. Van Meerbeke, R.M. Gibbs, H.L. Plasterer, W. Miao, Z. Feng, M.Y. Lin, and C.J. Sumner, The DcpS inhibitor RG3039 improves motor function in SMA mice, Hum. Mol. Genet. 22 (2013), pp. 4074–4083. doi:10.1093/hmg/ddt257.
  • J. Singh, M. Salcius, S.W. Liu, B.L. Staker, R. Mishra, J. Thurmond, G. Michaud, D.R. Mattoon, J. Printen, and J. Christensen, DcpS as a therapeutic target for spinal muscular atrophy, ACS Chem. Biol. 3 (2008), pp. 711–722. doi:10.1021/cb800120t.
  • L.C. Chong, G. Gandhi, J.M. Lee, W.W.Y. Yeo, and S.B. Choi, Drug discovery of spinal muscular atrophy (SMA) from the computational perspective: A comprehensive review, Int. J. Mol. Sci. 22 (2021), pp. 8962. doi:10.3390/ijms22168962.
  • L. Zhang, J. Tan, D. Han, and H. Zhu, From machine learning to deep learning: Progress in machine intelligence for rational drug discovery, Drug Discov. Today 22 (2017), pp. 1680–1685. doi:10.1016/j.drudis.2017.08.010.
  • W. Li, How do SMA-linked mutations of SMN1 lead to structural/functional deficiency of the SMA protein?, PLoS ONE 12 (2017), pp. e0178519. doi:10.1371/journal.pone.0178519.
  • J.D. Zhang, L. Sach-Peltason, C. Kramer, K. Wang, and M. Ebeling, Multiscale modelling of drug mechanism and safety, Drug Discov. Today 25 (2020), pp. 519–534. doi:10.1016/j.drudis.2019.12.009.
  • R. Duranay, R. Bashirov, and A. Şeytanoğlu, Simulation-based identification of optimal combination of drug candidates for spinal muscular atrophy, Procedia Comput. Sci. 120 (2017), pp. 253–259. doi:10.1016/j.procs.2017.11.236.
  • A. Garcia-Lopez, F. Tessaro, H.R.A. Jonker, A. Wacker, C. Richter, A. Comte, N. Berntenis, R. Schmucki, K. Hatje, O. Petermann, G. Chiriano, R. Perozzo, D. Sciarra, P. Konieczny, I. Faustino, G. Fournet, M. Orozco, R. Artero, F. Metzger, M. Ebeling, P. Goekjian, B. Joseph, H. Schwalbe, and L. Scapozza, Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes, Nat. Commun. 9 (2018), pp. 1–12. doi:10.1038/s41467-018-04110-1.
  • J. Axford, M.J. Sung, J. Manchester, D. Chin, M. Jain, Y. Shin, I. Dix, L.G. Hamann, A.K. Cheung, R. Sivasankaran, K. Briner, N.A. Dales, and B. Hurley, Use of intramolecular 1,5-sulfur−oxygen and 1,5-sulfur−halogen interactions in the design of n‑methyl-5-aryl‑n‑(2,2 6,6-tetramethylpiperidin-4-yl)-1,3,4-thiadiazol-2-amine SMN2 splicing modulators, Med. Chem. 64 (2021), pp. 4744–4761. doi:10.1021/acs.jmedchem.0c02173.
  • SPARTAN 16, Wavefunction, Inc, Irvine, USA, 2016; software available at http://wavefun.com.
  • J.J.P. Stewart, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, Mol. Model. 13 (2007), pp. 1173–1213. doi:10.1007/s00894-007-0233-4.
  • Y. Zhao and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (2008), pp. 215–241.
  • A.A. Kaya, E. Salamci, A. Menzek, S.S. Erdem, E. Şahin, and K. Ecer, Reaction of 9-oxabicyclo[4.2.1]non-7-ene-1-ol with tetrazine: An unusually facile intramolecular rearrangement, Tetrahedron 73 (2017), pp. 5381–5388. doi:10.1016/j.tet.2017.07.040.
  • C. Dokuzparmak, F.O. Tuncay, S.B. Ozdemir, B. Kurnaz, I. Demir, A. Colak, S.S. Erdem, and N. Yildirim, Newly synthesized piperazine derivatives as tyrosinase inhibitors: In vitro and in silico studies, Iran. Chem. Soc. 19 (2022), pp. 2739–2748. doi:10.1007/s13738-021-02487-3.
  • U. Cakmak, F.O. Tuncay, S.B. Ozdemir, E.A. Demir, İ. Demir, A. Colak, S.C. Uzuner, S.S. Erdem, and N. Yildirim, Synthesis of hydrazine containing piperazine or benzimidazole derivatives and their potential as α-amylase inhibitors by molecular docking, inhibition kinetics and in vitro cytotoxicity activity studies, Med. Chem. Res. 30 (2021), pp. 1886–1904. doi:10.1007/s00044-021-02785-8.
  • H. Dulger, O. Sari, N. Demirel, and S.S. Erdem, Computational insight into the enantioselectivity of homoboroproline catalyzed asymmetric aldol reaction, ChemistrySelect 4 (2019), pp. 7959–7967. doi:10.1002/slct.201901737.
  • Y. Du, O. Sari, S.S. Erdem, and A. Whiting, A bifunctional B,N-Based asymmetric catalytic nitrostyrene-Michael addition acting through a 10-membered ring cyclic transition state, Helv. Chim. Acta 104 (2021), pp. e202100199. doi:10.1002/hlca.202100199.
  • Kode srl, Dragon (software for molecular descriptor calculation) version 7.0.2, 2016; software available at https://chm.kode-solutions.net.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, Comput. Chem. Software news and updates 34 (2013), pp. 2121–2132. doi:10.1002/jcc.23361.
  • P. Gramatica, S. Cassani, and N. Chirico, QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS, Comput. Chem. Software news and updates 35 (2014), pp. 1036–1044. doi:10.1002/jcc.23576.
  • QSARINS 2.2.1., 2015; software available at www.qsar.it.
  • R. Todeschini, V. Consonni, and A. Maiocchi, The K correlation index: Theory development and its application in chemometrics, Chemom. Int. Lab. Syst. 46 (1999), pp. 13–29. doi:10.1016/S0169-7439(98)00124-5.
  • L.M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, C.L. Moland, and D.M. Sheehan, QSAR models using a large diverse set of estrogens, Chem. Inf. Comput. Sci. 41 (2001), pp. 186–195. doi:10.1021/ci000066d.
  • G. Schüürmann, R. Ebert, J. Chen, B. Wang, and R. Kühne, External validation and prediction employing the predictive squared correlation coefficients test set activity mean vs training set activity mean, Chem. Inf. Model. 48 (2008), pp. 2140–2145. doi:10.1021/ci800253u.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on definition of Q2 parameter for QSAR validation, Chem. Inf. Model. 49 (2009), pp. 1669–1678. doi:10.1021/ci900115y.
  • V. Consonni, D. Ballabio, and R. Todeschini, Evaluation of model predictive ability by external validation techniques, Chemom. 24 (2010), pp. 194–201. doi:10.1002/cem.1290.
  • L.I. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics 31 (1989), pp. 255–268. doi:10.2307/2532051.
  • L.I. Lin, Assay validation using the concordance correlation coefficient, Biometrics 48 (1992), pp. 599–604. doi:10.2307/2532314.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New inter-comparable thresholds for different validation criteria and the need for scatter plot inspection, Chem. Inf. Model. 52 (2012), pp. 2044–2058. doi:10.1021/ci300084j.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring r2m metrics for validation of QSPR models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205. doi:10.1016/j.chemolab.2011.03.011.
  • A. Golbraikh and A. Tropsha, Beware of q2!, Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • OECD, Guidance document on the validation of (quantitative) structure–activity relationship [(Q)SAR] models, ENV/JM/MONO (2007)2, OECD Environment Health and Safety Publications Series of Testing and Assessment No. 69, Organisation for Economic Co-operation and Development, Paris, 2007.
  • P. Gramatica, S. Cassani, P.P. Roy, S. Kovarich, C.W. Yap, and E. Papa, QSAR modeling is not “Push a button and find a correlation”: A case study of toxicity of(Benzo-)triazoles on algae, Mol. Inform. 31 (2012), pp. 817–835. doi:10.1002/minf.201200075.
  • K. Roy, P. Ambure, and S. Kar, On a simple approach for determining applicability domain of QSAR models, Chemom. Int. Lab. Syst. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures, further studies on validation of predictive QSAR models, Chemom. Int. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • A. Rietz, H. Li, K.M. Quist, J.J. Cherry, C.L. Lorson, B.G. Burnett, and K.J. Hodgetts, Discovery of a small molecule probe that post-translationally stabilizes the survival motor neuron protein for the treatment of spinal muscular atrophy, Med. Chem. 60 (2017), pp. 4594–4610. doi:10.1021/acs.jmedchem.6b01885.
  • K. Roy, P. Ambure, and S. Kar, How precise are our quantitative structure activity relationship derived predictions for new query chemicals?, ACS Omega 3 (2018), pp. 11392–11406. doi:10.1021/acsomega.8b01647.
  • P. Erzincan, M.T. Saçan, B.Y. Dursun, Ö. Danış, S. Demir, S.S. Erdem, and A. Ogan, QSAR models for antioxidant activity of new coumarin derivatives, SAR QSAR Environ. Res. 26 (2015), pp. 721–737. doi:10.1080/1062936X.2015.1088571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.