179
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hybrid descriptors–conjoint indices: a case study on imidazole-thiourea containing glutaminyl cyclase inhibitors for design of novel anti-Alzheimer’s candidates

, , ORCID Icon &
Pages 361-381 | Received 08 Mar 2023, Accepted 03 May 2023, Published online: 01 Jun 2023

References

  • A. Alzheimer, R.A. Stelzmann, H.N. Schnitzlein, and F.R. Murtagh, An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”, Clin. Anat. 8 (1995), pp. 429–431. doi:10.1002/ca.980080612.
  • M.A. DeTure and D.W. Dickson, The neuropathological diagnosis of Alzheimer’s disease, Mol. Neurodegener. 14 (2019), pp. 1–18. doi:10.1186/s13024-019-0333-5.
  • M.S. Parihar and T. Hemnani, Alzheimer’s disease pathogenesis and therapeutic interventions, J. Clin. Neurosci. 11 (2004), pp. 456–467. doi:10.1016/j.jocn.2003.12.007.
  • S. Chakrabarti, V.K. Khemka, A. Banerjee, G. Chatterjee, A. Ganguly, and A. Biswas, Metabolic risk factors of sporadic Alzheimer’s disease: Implications in the pathology, pathogenesis and treatment, Aging Dis. 6 (2015), pp. 282–299. doi:10.14336/AD.2014.002.
  • K. Lao, N. Ji, X. Zhang, W. Qiao, Z. Tang, and X. Gou, Drug development for Alzheimer’s disease: Review, J. Drug Target 27 (2019), pp. 164–173. doi:10.1080/1061186X.2018.1474361.
  • Alzheimer’s Association, Alzheimer’s disease facts and figures, Alzheimer’s Dement. 17 (2021), pp. 327–406.
  • Z. Breijyeh and R. Karaman, Comprehensive review on Alzheimer’s disease: Causes and treatment, Molecules 25 (2020), pp. 5789. doi:10.3390/molecules25245789.
  • K.G. Yiannopoulou and S.G. Papageorgiou, Current and future treatments in Alzheimer disease: An update, J. Cent. Nerv. Syst. Dis. 12 (2020), pp. 117957352090739. doi:10.1177/1179573520907397.
  • H. Hillen, The beta amyloid dysfunction (bad) hypothesis for Alzheimer’s disease, Front. Neurosci. 13 (2019), pp. 1154. doi:10.3389/fnins.2019.01154.
  • Y. Harigaya, T.C. Saido, C.B. Eckman, C.M. Prada, M. Shoji, and S.G. Younkin, Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain, Biochem. Biophys. Res. Commun. 24 (2000), pp. 422–427. doi:10.1006/bbrc.2000.3490.
  • C. Russo, T.C. Saido, L.M. DeBusk, M. Tabaton, P. Gambetti, and J.K. Teller, Heterogeneity of water-soluble amyloid beta-peptide in Alzheimer’s disease and Down’s syndrome brains, FEBS Lett. 409 (1997), pp. 411–416. doi:10.1016/S0014-5793(97)00564-4.
  • R. Perez-Garmendia and G. Gevorkian, Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer´s disease Immunotherapy, Curr. Neuropharmacol. 11 (2013), pp. 491–498. doi:10.2174/1570159X11311050004.
  • M. Morawski, S. Schilling, M. Kreuzberger, A. Waniek, C. Jäger, B. Koch, H. Cynis, A. Kehlen, T. Arendt, M. Hartlage-Rübsamen, H.U. Demuth, and S. Roßner, Glutaminyl cyclase in human cortex: Correlation with (pGlu)-amyloid-β load and cognitive decline in Alzheimer’s disease, J. Alzheimers Dis. 39 (2014), pp. 385–400. doi:10.3233/JAD-131535.
  • Y.M. Kuo, M.R. Emmerling, A.S. Woods, R.J. Cotter, and A.E. Roher, Isolation, chemical characterization, and quantitation of a beta 3-pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits, Biochem. Biophys. Res. Commun. 237 (1997), pp. 188–191. doi:10.1006/bbrc.1997.7083.
  • A. Becker, S. Kohlmann, A. Alexandru, W. Jagla, F. Canneva, C. Bäuscher, H. Cynis, R. Sedlmeier, S. Graubner, S. Schilling, H.U. Demuth, and S.V. Hörsten, Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration, BMC Neurosci. 14 (2013), pp. 1–18. doi:10.1186/1471-2202-14-108.
  • C.H. Hennekens, B.A. Bensadon, R. Zivin, and J.M. Gaziano, Hypothesis: Glutaminyl Cyclase inhibitors decrease risks of Alzheimer’s disease and related dementias, Expert Rev. Neurother. 15 (2015), pp. 1245–1248. doi:10.1586/14737175.2015.1088784.
  • P. Scheltens, M. Hallikainen, T. Grimmer, T. Duning, A.A. Gouw, C.E. Teunissen, A.M. Wink, P. Maruff, J. Harrison, C.M. van Baal, S. Bruins, I. Lues, and N.D. Prins, Safety, tolerability and efficacy of the Glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: Results of a randomized, double-blind, placebo-controlled phase 2a study, Alzheimers Res. Ther. 10 (2018), pp. 1–14. doi:10.1186/s13195-018-0431-6.
  • T. Hoffmann, A. Meyer, U. Heiser, S. Kurat, L. Böhme, M. Kleinschmidt, K.U. Bühring, B. Hutter-Paier, M. Farcher, H.U. Demuth, I. Lues, and S. Schilling, Glutaminyl cyclase inhibitor PQ912 improves cognition in mouse models of Alzheimer’s disease-studies on relation to effective target occupancy, J. Pharmacol. Exp. Ther. 362 (2017), pp. 119–130. doi:10.1124/jpet.117.240614.
  • S. Schilling, U. Zeitschel, T. Hoffmann, U. Heiser, M. Francke, A. Kehlen, M. Holzer, B. Hutter-Paier, M. Prokesch, M. Windisch, W. Jagla, D. Schlenzig, C. Lindner, T. Rudolph, G. Reuter, H. Cynis, D. Montag, H.U. Demuth, and S. Rossner, Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease-like pathology, Nat. Med. 14 (2008), pp. 1106–1111. doi:10.1038/nm.1872.
  • H. Song, Y.J. Chang, M. Moon, S.K. Park, P.T. Tran, V.H. Hoang, J. Lee, and I. Mook-Jung, Inhibition of Glutaminyl cyclase ameliorates amyloid pathology in an animal model of Alzheimer’s disease via the modulation of γ-secretase activity, J. Alzheimers Dis. 43 (2015), pp. 797–807. doi:10.3233/JAD-141356.
  • H. Cynis, T. Hoffmann, D. Friedrich, A. Kehlen, K. Gans, M. Kleinschmidt, J.U. Rahfeld, R. Wolf, M. Wermann, A. Stephan, M. Haegele, R. Sedlmeier, S. Graubner, W. Jagla, A. Müller, R. Eichentopf, U. Heiser, F. Seifert, P.H. Quax, M.R. de Vries, I. Hesse, D. Trautwein, U. Wollert, S. Berg, E.J. Freyse, S. Schilling, and H.U. Demuth, The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions, EMBO Mol. Med. 3 (2011), pp. 545–558. doi:10.1002/emmm.201100158.
  • A. Talevi, Computer-aided drug design: An overview, in Computational Drug Discovery and Design. Methods in Molecular Biology, M. Gore and U. Jagtap, eds., Humana Press, New York, 2018, pp. 1–19.
  • M.H. Baig, K. Ahmad, S. Roy, J.M. Ashraf, M. Adil, M.H. Siddiqui, S. Khan, M.A. Kamal, I. Provazník, and I. Choi, Computer aided drug design: Success and limitations, Curr. Pharma. Des. 22 (2016), pp. 572–581. doi:10.2174/1381612822666151125000550.
  • B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov, and C.H. Andrade, QSAR-Based virtual Screening: Advances and applications in drug discovery, Front. Pharmacol. 9 (2018), pp. 1275. doi:10.3389/fphar.2018.01275.
  • D.A. Winkler, The role of quantitative structure–activity relationships (QSAR) in biomolecular discovery, Brief. Bioinform. 3 (2002), pp. 73–86. doi:10.1093/bib/3.1.73.
  • R. Munuganti, N. Yadavalli, S. Nunna, and S. Mahmood, 3D-QSAR CoMFA study on human glutaminyl cyclase inhibitors, IEJMD 6 (2007), pp. 320–330.
  • V. Kumar, M.K. Gupta, G. Singh, and Y.S. Prabhakar, CP-MLR/PLS directed QSAR study on the glutaminyl cyclase inhibitory activity of imidazoles: Rationales to advance the understanding of activity profile, J. Enz. Inhib. Med. Chem. 28 (2013), pp. 515–522. doi:10.3109/14756366.2011.654111.
  • O.H.A. Al-Attraqchi and K.N. Venugopala, 2D- and 3D-QSAR modeling of imidazole-based glutaminyl cyclase inhibitors, Curr. Comput. Aided Drug Des. 16 (2020), pp. 682–697. doi:10.2174/1573409915666190918150136.
  • A.A. Toropov, A.P. Toropova, I. Raška, E. Benfenati, and G.C. Gini, Development of QSAR models for predicting anti-HIV-1 activity using the Monte Carlo method, Cent. Eur. J. Chem. 11 (2013), pp. 371–380.
  • A.A. Toropov, A.P. Toropova, I. Raska, D. Leszczynska, and J. Leszczynski, Comprehension of drug toxicity: Software and databases, Comput. Biol. Med. 45 (2014), pp. 20–25. doi:10.1016/j.compbiomed.2013.11.013.
  • A.A. Toropov, A.P. Toropova, F. Como, and E. Benfenati, Quantitative structure–activity relationship models for bee toxicity, Toxicol. Environ. Chem. 99 (2016), pp. 1117–1128.
  • A. Kumar and S. Chauhan, Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors, SAR QSAR Environ. Res. 28 (2017), pp. 179–197. doi:10.1080/1062936X.2017.1293729.
  • P. Kumar, A. Kumar, J. Sindhu, and S. Lal, QSAR models for nitrogen containing monophosphonate and bisphosphonate derivatives as human farnesyl pyrophosphate synthase inhibitors based on Monte Carlo method, Drug Res. 69 (2019), pp. 159–167. doi:10.1055/a-0652-5290.
  • M.S. Chauhan, A. Kumar, and A. Kumar, Development of prediction model for fructose-1,6- bisphosphatase inhibitors using the Monte Carlo method, SAR QSAR Environ. Res. 30 (2019), pp. 145–159. doi:10.1080/1062936X.2019.1568299.
  • S. Ahmadi, H. Ghanbari, S. Lotfi, and N. Azimi, Predictive QSAR modeling for the antioxidant activity of natural compounds derivatives based on Monte Carlo method, Mol. Divers. 25 (2021), pp. 87–97. doi:10.1007/s11030-019-10026-9.
  • P. Kumar and A. Kumar, Monte Carlo method based QSAR studies of Mer Kinase Inhibitors in compliance with OECD Principles, Drug Res. 68 (2018), pp. 189–195. doi:10.1055/s-0043-119288.
  • A.A. Toropov and A.P. Toropova, The index of ideality of correlation: A criterion of predictive potential of QSPR/QSAR models? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 819 (2017), pp. 31–37. doi:10.1016/j.mrgentox.2017.05.008.
  • A.A. Toropov and A.P. Toropova, Predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cells using index of ideality of correlation, Anticancer Res. 38 (2018), pp. 6189–6194. doi:10.21873/anticanres.12972.
  • A.A. Toropov, I. Raška, A.P. Toropova, M. Raškova, A.M. Veselinović, and J.B. Veselinović, The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models, Sci. Total Environ. 659 (2019), pp. 1387–1394. doi:10.1016/j.scitotenv.2018.12.439.
  • P. Kumar and A. Kumar, Nucleobase sequence-based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method, J. Biomol. Struct. Dyn. 38 (2020), pp. 3296–3306. doi:10.1080/07391102.2019.1656109.
  • A.A. Toropov and A.P. Toropova, Correlation intensity index: Building up models for mutagenicity of silver nanoparticles, Sci. Total Environ. 737 (2020), pp. 139720. doi:10.1016/j.scitotenv.2020.139720.
  • P. Kumar and A. Kumar, Correlation intensity index (CII) as a benchmark of predictive potential: Construction of quantitative structure activity relationship models for anti-influenza single-stranded DNA aptamers using Monte Carlo optimization, J. Mol. Struct. 1246 (2021), pp. 131205. doi:10.1016/j.molstruc.2021.131205.
  • V.H. Hoang, P.T. Tran, M. Cui, V.T. Ngo, K. Choi, K. Choi, K. Choi, H. Kim, H. Kim, H.J. Ha, H.S. Hong, Y.H. Kim, Y.H. Kim, and J. Lee, Discovery of potent human glutaminyl cyclase inhibitors as anti-Alzheimer’s agents based on rational design, J. Med. Chem. 60 (2017), pp. 2573–2590. doi:10.1021/acs.jmedchem.7b00098.
  • V.H. Hoang, V.T.H. Ngo, M. Cui, N.V. Manh, P.T. Tran, H.J. Ha, Y.H. Chang, Y.H. Chang, Y.H. Chang, Y.H. Chang, S.J.Y. Macalino, J. Lee, J. Lee, and J. Lee, Discovery of conformationally restricted human glutaminyl cyclase inhibitors as potent anti-Alzheimer’s agents by structure-based design, J. Med. Chem. 62 (2019), pp. 8011–8027. doi:10.1021/acs.jmedchem.9b00751.
  • V.T.H. Ngo, V.H. Hoang, P.T. Tran, J. Ann, M. Cui, G. Park, S. Choi, J. Lee, H. Kim, H.J. Ha, K. Choi, Y.H. Kim, and J. Lee, Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: Structure-activity relationship study of Arg-mimetic region, Bioorg. Med. Chem. 26 (2018), pp. 1035–1049. doi:10.1016/j.bmc.2018.01.015.
  • V.T.H. Ngo, V.H. Hoang, P.T. Tran, N.V. Manh, J. Ann, E. Kim, M. Cui, S. Choi, J. Lee, H. Kim, H.J. Ha, K. Choi, Y.H. Kim, and J. Lee, Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors, Bioorg. Med. Chem. 26 (2018), pp. 3133–3144. doi:10.1016/j.bmc.2018.04.040.
  • A.M. Veselinović, A.A. Toropov, A.P. Toropova, D. Stanković-Đorđević, and J.B. Veselinovic, Design and development of novel antibiotics based on FtsZ inhibition – In silico studies, New J. Chem. 42 (2018), pp. 10976–10982. doi:10.1039/C8NJ01034J.
  • Marvin-Sketch-v.14.11.17.0, ChemAxon, XhemAxon KFT, Budapest, Hungary, 2014.
  • N. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, and G.R. Hutchison, Open babel: An open chemical toolbox, J. Cheminform. 3 (2011), pp. 33. doi:10.1186/1758-2946-3-33.
  • A. Kumar and S. Chauhan, QSAR differential model for prediction of SIRT1 modulation using Monte Carlo method, Drug Res. 67 (2017), pp. 156–162.
  • A. Kumar and S. Chauhan, Use of simplified molecular input line entry system and molecular graph based descriptors in prediction and design of pancreatic lipase inhibitors, Fut. Med. Chem. 10 (2018), pp. 1603–1622. doi:10.4155/fmc-2018-0024.
  • A.A. Toropov, A.P. Toropova, S.E. Martyanov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines, Chemom. Intell. Lab. Syst. 109 (2011), pp. 94–100. doi:10.1016/j.chemolab.2011.07.008.
  • S. Jain, B. Bhardwaj, S.K.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modelling, J. Biomol. Struct. Dyn. 38 (2020), pp. 1683–1696. doi:10.1080/07391102.2019.1615000.
  • A.A. Toropov, A.P. Toropova, A. Roncaglioni, E. Benfenati, Prediction of biochemical endpoints by the CORAL software: Prejudices, paradoxes, and results, in Computational Toxicology. Methods in Molecular Biology, O. Nicolotti, ed., Springer Nature, New York, 2018, pp. 573–583.
  • S. Jain, S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Good and bad molecular fingerprints for human rhinovirus 3C protease inhibition: Identification, validation, and application in designing of new inhibitors through Monte Carlo-based QSAR study, J. Biomol. Struct. Dyn. 38 (2020), pp. 66–77. doi:10.1080/07391102.2019.1566093.
  • A.P. Toropova, A.A. Toropov, J. Leszczynski, and N. Sizochenko, Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions, Environ. Toxicol. Pharmacol. 86 (2021), pp. 103665. doi:10.1016/j.etap.2021.103665.
  • A. Kumar and P. Kumar, Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking, Struct. Chem. 32 (2021), pp. 149–165. doi:10.1007/s11224-020-01629-2.
  • K. Bagri, A. Kumar, M. Nimbhal, and P. Kumar, Index of ideality of correlation and correlation contradiction index: A confluent perusal on acetylcholinesterase inhibitors, Mol. Simul. 46 (2020), pp. 777–786. doi:10.1080/08927022.2020.1770753.
  • A.P. Toropova and A. Toropov, QSPR and nano-QSPR: What is the difference? J. Mol. Struct. 1182 (2019), pp. 141–149. doi:10.1016/j.molstruc.2019.01.040.
  • A. Kumar, J. Sindhu, and P. Kumar, In-silico identification of fingerprint of pyrazolyl sulfonamide responsible for inhibition of N -myristoyltransferase using Monte Carlo method with index of ideality of correlation, J. Biomol. Struct. Dyn. 39 (2021), pp. 5014–5025. doi:10.1080/07391102.2020.1784286.
  • M. Nimbhal, K. Bagri, P. Kumar, and A. Kumar, The index of ideality of correlation: A statistical yardstick for better QSAR modeling of glucokinase activators, Struct. Chem. 31 (2020), pp. 831–839. doi:10.1007/s11224-019-01468-w.
  • A. Kumar and P. Kumar, Construction of pioneering quantitative structure activity relationship screening models for abuse potential of designer drugs using index of ideality of correlation in Monte Carlo optimization, Arch. Toxicol. 94 (2020), pp. 3069–3086. doi:10.1007/s00204-020-02828-w.
  • S. Ahmadi, A.P. Toropova, and A.A. Toropov, Correlation intensity index: Mathematical modeling of cytotoxicity of metal oxide nanoparticles, Nanotoxicology 14 (2020), pp. 1118–1126. doi:10.1080/17435390.2020.1808252.
  • A.A. Toropov, N. Sizochenko, A.P. Toropova, D. Leszczynska, and J. Leszczynski, Advancement of predictive modeling of zeta potentials (ζ) in metal oxide nanoparticles with correlation intensity index (CII), J. Mol. Liq. 317 (2020), pp. 113929. doi:10.1016/j.molliq.2020.113929.
  • A.P. Toropova and A.A. Toropov, Fullerenes C 60 and C 70: A model for solubility by applying the correlation intensity index, Fuller. Nanotub. Carbon Nanostruct. 28 (2020), pp. 900–906. doi:10.1080/1536383X.2020.1779705.
  • K. Roy, On some aspects of validation of predictive quantitative structure-activity relationship models, Expert Opin. Drug Discov. 2 (2007), pp. 1567–1577. doi:10.1517/17460441.2.12.1567.
  • P. Gramatica, On the development and validation of QSAR models, in Computational Toxicology, Methods in Molecular Biology, B. Reisfeld and A. Mayeno, eds., Vol. 930, Humana Press, Totowa, New Jersey, 2013, pp. 499–526.
  • A. Golbraikh and A. Tropsha, Beware of q2! J. Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • V. Consonni, D. Ballabio, and R. Todeschini, Evaluation of model predictive ability by external validation techniques, J. Chemom. 24 (2010), pp. 194–201. doi:10.1002/cem.1290.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • K. Roy and S. Kar, Importance of applicability domain of QSAR models, in Quantitative structure-activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, P.A. Hershey, ed., IGI Global, USA, 2015, pp. 180–211.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461. doi:10.1002/jcc.21334.
  • Discovery studio visulizer. Dassault-Systèmes-BIOVIA, Dassault Systèmes, San Diego, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.