128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MDM-Pred: a freely available web application for predicting the metabolism of drug-like compounds by the gut microbiota

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 383-393 | Received 01 Mar 2023, Accepted 11 May 2023, Published online: 25 May 2023

References

  • J.G. Caporaso, C.L. Lauber, E.K. Costello, D. Berg-Lyons, A. Gonzalez, J. Stombaugh, D. Knights, P. Gajer, J. Ravel, N. Fierer, J.I. Gordon, and R. Knight, Moving pictures of the human microbiome, Genome Biol. 12 (2011), pp. R50. doi:10.1186/gb-2011-12-5-r50.
  • M. Elrakaiby, B.E. Dutilh, M.R. Rizkallah, A. Boleij, J.N. Cole, and R.K. Aziz, Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics, OMICS 18 (2014), pp. 402–414. doi:10.1089/omi.2014.0018.
  • J.M. Martí, D. Martínez-Martínez, T. Rubio, C. Gracia, M. Peña, A. Latorre, A. Moya, and C.P. Garay, Health and disease imprinted in the time variability of the human microbiome, mSystems 2 (2017), pp. e00144–16. doi:10.1128/mSystems.00144-16.
  • G. Sharon, N. Garg, J. Debelius, R. Knight, P.C. Dorrestein, and S.K. Mazmanian, Specialized metabolites from the microbiome in health and disease, Cell Metab. 20 (2014), pp. 719–730. doi:10.1016/j.cmet.2014.10.016.
  • A. Koh, F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed, From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites, Cell 165 (2016), pp. 1332–1345. doi:10.1016/j.cell.2016.05.041.
  • H. Danielsson and B. Gust, On serum-cholesterol levels and neutral fecal sterols in germ-free rats; bile acids and steroids 59, Arch. Biochem. Biophys. 83 (1959), pp. 482–485. doi:10.1016/0003-9861(59)90056-6.
  • E.N. Ilina, E.M. Mayorova, A.I. Manolov, A.A. Korenkova, V.V. Bahmetjev, and K.S. Gorbunov, Gut microbiome and drug metabolism, Biomed. Chem. Res. Meth. 4 (2021), pp. e00146. doi:10.18097/BMCRM00146.
  • M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, and A.L. Goodman, Mapping human microbiome drug metabolism by gut bacteria and their genes, Nature 7762 (2019), pp. 462–467. doi:10.1038/s41586-019-1291-3.
  • T. Sousa, V. Yadav, V. Zann, A. Borde, B. Abrahamsson, and A.W. Basit, On the colonic bacterial metabolism of azo-bonded prodrugs of 5-aminosalicylic acid, J. Pharm. Sci. 103 (2014), pp. 1–5. doi:10.1002/jps.24103.
  • H.J. Haiser, D.B. Gootenberg, K. Chatman, G. Sirasani, E.P. Balskus, and P.J. Turnbaugh, Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta, Science 341 (2013), pp. 295–298. doi:10.1126/science.1235872.
  • H. Okuda, K. Ogura, A. Kato, H. Takubo, and T. Watabe, A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs, J. Pharmacol. Exp. Ther. 287 (1998), pp. 791–799.
  • M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, and A.L. Goodman, Separating host and microbiome contributions to drug pharmacokinetics and toxicity, Science 363 (2019), pp. 1–16. doi:10.1126/science.aat9931.
  • B.D. Wallace, H. Wang, K.T. Lane, J.E. Scott, J. Orans, J.S. Koo, M. Venkatesh, C. Jobin, L.A. Yeh, S. Mani, and M.R. Redinbo, Alleviating cancer drug toxicity by inhibiting a bacterial enzyme, Science 330 (2010), pp. 831–835. doi:10.1126/science.1191175.
  • J. Qin, R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D.R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.-M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H.B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Doré, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, P. MetaHIT Consortium, S.D. Bork, E.J. Wang, and J. Wang, A human gut microbial gene catalogue established by metagenomic sequencing, Nature 464 (2010), pp. 59–65. doi:10.1038/nature08821.
  • A. Almeida, A.L. Mitchell, M. Boland, S.C. Forster, G.B. Gloor, A. Tarkowska, T.D. Lawley, and R.D. Finn, A new genomic blueprint of the human gut microbiota, Nature 568 (2019), pp. 499–504. doi:10.1038/s41586-019-0965-1.
  • J. Lloyd-Price, A. Mahurkar, G. Rahnavard, J. Crabtree, J. Orvis, A.B. Hall, A. Brady, H.H. Creasy, C. McCracken, M.G. Giglio, D. McDonald, E.A. Franzosa, R. Knight, O. White, and C. Huttenhower, Strains, functions and dynamics in the expanded Human Microbiome Project, Nat. Publ. Gr. 550 (2017), pp. 61–66. doi:10.1038/nature23889.
  • S. Nayfach, Z.J. Shi, R. Seshadri, K.S. Pollard, and N.C. Kyrpides, New insights from uncultivated genomes of the global human gut microbiome, Nature 568 (2019), pp. 505–510. doi:10.1038/s41586-019-1058-x.
  • E. Pasolli, F. Asnicar, S. Manara, M. Zolfo, N. Karcher, F. Armanini, F. Beghini, P. Manghi, A. Tett, P. Ghensi, M.C. Collado, B.L. Rice, C. DuLong, X.C. Morgan, C.D. Golden, C. Quince, C. Huttenhower, and N. Segata, Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle, Cell 176 (2019), pp. 649–662.e20. doi:10.1016/j.cell.2019.01.001.
  • B. Javdan, J.G. Lopez, P. Chankhamjon, Y.J. Lee, R. Hull, Q. Wu, X. Wang, S. Chatterjee, and M.S. Donia, Personalized mapping of drug metabolism by the human gut microbiome, Cell 181 (2021), pp. 1661–1679. doi:10.1016/j.cell.2020.05.001.
  • A.K. Sharma, S.K. Jaiswal, N. Chaudhary, and V.K. Sharma, A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota, Sci. Rep. 7 (2017), pp. 1–13. doi:10.1038/s41598-017-10203-6.
  • L.E. Mccoubrey, S. Thomaidou, M. Elbadawi, S. Gaisford, and A.W. Basit, Machine learning predicts drug metabolism and bioaccumulation by intestinal microbiota, Pharmaceutics 13 (2021), pp. 1–14. doi:10.3390/pharmaceutics13122001.
  • S. Zheng, L. Wang, J. Xiong, G. Liang, Y. Xu, and F. Lin, Consensus prediction of human gut microbiota-mediated metabolism susceptibility for small molecules by machine learning, structural alerts, and dietary compounds-based average similarity methods, J. Chem. Inf. Model. 62 (2022), pp. 1078–1099. doi:10.1021/acs.jcim.1c00948.
  • P.V. Pogodin, A.A. Lagunin, D.A. Filimonov, and V.V. Poroikov, PASS Targets: Ligand-based multi- target computational system based on a public data and naïve Bayes approach, SAR QSAR Environ. Res. 26 (2015), pp. 783–793. doi:10.1080/1062936X.2015.1078407.
  • D.A. Filimonov, D.S. Druzhilovskiy, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, A.V. Dmitriev, P.V. Pogodin, and V.V. Poroikov, Computer-aided prediction of biological activity spectra for chemical compounds: Opportunities and limitation, Biomed. Chem. Res. Meth. 1 (2018), pp. e00004. doi:10.18097/BMCRM00004.
  • V.V. Poroikov, D.A. Filimonov, Y.V. Borodina, A.A. Lagunin, and A. Kos, Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 1349–1355. doi:10.1021/ci000383k.
  • A.V. Dmitriev, D.A. Filimonov, A.V. Rudik, P.V. Pogodin, D.A. Karasev, A.A. Lagunin, and V.V. Poroikov, Drug-drug interaction prediction using PASS, SAR QSAR Environ. Res. 30 (2019), pp. 655–664. doi:10.1080/1062936X.2019.1653966.
  • I.L. Paraiso, L.S. Plagmann, L. Yang, R. Zielke, F. Adrian, C.S. Maier, A.E. Sikora, P.R. Blakemore, and J.F. Stevens, Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium Eubacterium ramulus, Mol. Nutr. Food Res. 63 (2020), pp. 1–19. doi:10.1002/mnfr.201800923.
  • D. Filimonov, V. Poroikov, Y. Borodina, and T. Gloriozova, Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other descriptors, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 666–670. doi:10.1021/ci980335o.
  • D.A. Filimonov, A.V. Zakharov, A.A. Lagunin, and V.V. Poroikov, QNA-based “Star Track” QSAR approach, SAR QSAR Environ. Res. 20 (2009), pp. 679–709. doi:10.1080/10629360903438370.
  • D.S. Druzhilovskiy, L.A. Stolbov, P.V. Pogodin, D.A. Filimonov, A.V. Veselovsky, K. Stefanisko, N.I. Tarasova, M.C. Nicklaus, and V.V. Poroikov, Computational approaches to identify a hidden pharmacological potential in large chemical libraries, JSFI 7 (2020), pp. 57–76. doi:10.14529/jsfi200306.
  • A. Rudik, V. Bezhentsev, A. Dmitriev, A. Lagunin, D. Filimonov, and V. Poroikov, Metatox - Web application for generation of metabolic pathways and toxicity estimation, J. Bioinf. Comput. Biol. 17 (2019), pp. 1–14. doi:10.1142/S0219720019400018.
  • A.V. Rudik, A.V. Dmitriev, A.A. Lagunin, D.A. Filimonov, and V.V. Poroikov, PASS-based prediction of metabolites detection in biological systems, SAR QSAR Environ. Res. 30 (2019), pp. 751–758. doi:10.1080/1062936X.2019.1665099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.