131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Functionally substituted 2-aminothiazoles as antimicrobial agents: in vitro and in silico evaluation

, , ORCID Icon, , & ORCID Icon
Pages 395-414 | Received 27 Feb 2023, Accepted 12 May 2023, Published online: 30 May 2023

References

  • S. Andrei, L. Valeanu, R. Chirvasuta, and M.-G. Stefan, New FDA approved antibacterial drugs: 2015-2017, Discoveries 6 (2018), pp. e81. doi:10.15190/d.2018.1.
  • A.H. Holmes, L.S. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P. Guerin, and L. Piddock, Understanding the mechanisms and drivers of antimicrobial resistance, Lancet 387 (2016), pp. 176–187. doi:10.1016/S0140-6736(15)00473-0.
  • S.E. Winter, C.A. Lopez, and A. Bäumler, The dynamics of gut-associated microbial communities during inflammation, EMBO Rep. 14 (2013), pp. 319–327. doi:10.1038/embor.2013.27.
  • Available at https://europa.eu/european-union/about-eu/agencies/ecdc_en (accessed February 10, 2023).
  • Available at http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf (accessed February 10, 2023).
  • Available at http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-europe-2014.pdf (accessed February 10, 2023).
  • M.A. Pfaller, Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment, Am. J. Med. 125 (2012), pp. S3–S13. doi:10.1016/j.amjmed.2011.11.001.
  • B.P. Mathew and M. Nath, Recent approaches to antifungal therapy for invasive mycoses, Chem. Med. Chem. 4 (2009), pp. 310–323. doi:10.1002/cmdc.200800353.
  • C.A. Munro, Echinocandin resistance in human pathogenic fungi, Expert Rev. Anti-Infect. 10 (2012), pp. 115–116. doi:10.1586/eri.11.171.
  • D.S. Perlin, Resistance to echinocandin-class antifungal drugs, Drug Resist. Updat. 10 (2007), pp. 121–130. doi:10.1016/j.drup.2007.04.002.
  • S. Shabnam Thakur, R. Sharma, and S. Sardana, The potential of thiazole derivatives as antimicrobial agents, Chem. Proc. 12 (2022), pp. 36–46.
  • I. Althagafi, N. El-Metwaly, and T. Farghaly, New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking, Molecules 24 (2019), pp. 1741. doi:10.3390/molecules24091741.
  • A. Biernasiuk, M. Kawczyńska, and A. Berecka-Rycerz, Synthesis, antimicrobial activity, and determination of the lipophilicity of ((cyclohex-3-enylmethylene)hydrazinyl)thiazole derivatives, Med. Chem. Res. 28 (2019), pp. 2023–2036. doi:10.1007/s00044-019-02433-2.
  • R.D. Kamble, R.J. Meshram, S.V. Hese, R.A. More, S.S. Kamble, R.N. Gacche, and B.S. Dawane, Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents, Comput. Biol. Chem. 61 (2016), pp. 86–96. doi:10.1016/j.compbiolchem.2016.01.007.
  • Z.A. Muhammad, G.S. Masaret, M.M. Amin, M.A. Abdallah, and T.A. Farghaly, Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes, Med. Chem. 13 (2017), pp. 226–238. doi:10.2174/1573406412666160920091146.
  • S. Di Franco, B. Parrino, M. Gaggianesi, V.D. Pantina, P. Bianca, A. Nicotra, L.R. Mangiapane, M. Lo Iacono, G. Ganduscio, V. Veschi, O.R. Brancato, A. Glaviano, A. Turdo, I. Pillitteri, L. Colarossi, S. Cascioferro, D. Carbone, C. Pecoraro, M.E. Fiori, R. De Maria, M. Todaro, I. Screpanti, G. Cirrincione, P. Diana, and G. Stassi, CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin, Science 24 (2021), pp. 102664.
  • Z. Xu, M. Ba, H. Zhou, Y. Cao, C. Tang, Y. Yang, R. He, Y. Liang, X. Zhang, Z. Li, L. Zhu, Y. Guo, and C. Guo, 2,4,5-Trisubstituted thiazole derivatives: A novel and potent class of non-nucleoside inhibitors of wild type and mutant HIV-1 reverse transcriptase, Eur. J. Med. Chem. 85 (2014), pp. 27–42. doi:10.1016/j.ejmech.2014.07.072.
  • K. Liaras, M. Fesatidou, and A. Geronikaki, Thiazoles and thiazolidinones as COX/LOX inhibitors, Molecules 18 (2018), pp. 685. doi:10.3390/molecules23030685.
  • C.H. Sowjanya, S.S. Swamy, S. Gomathi, and A.K. Babu, Synthesis, chemistry and anti-hypertensive activity of some new thiazole-thiadiazole derivatives, Ijarmps 1 (2016), pp. 6–10.
  • U. Salar, K.M. Khan, S. Chigurupati, M. Taha, A. Wadood, S. Vijayabalan, M. Ghufran, and S. Perveen, New hybrid hydrazinyl thiazole substituted chromones: As potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers, Sci. Rep. 7 (2017), pp. 16980. doi:10.1038/s41598-017-17261-w.
  • R.E. Khidre and I.A.M. Radini, Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents, Sci. Rep. 11 (2021), pp. 7846. doi:10.1038/s41598-021-86424-7.
  • V. Kartsev, A. Geronikaki, A. Zubenko, A. Petrou, M. Ivanov, J. Glamoˇclija, M. Sokovic, L. Divaeva, A. Morkovnik, and A. Klimenko, Synthesis and antimicrobial activity of new heteroaryl(aryl) thiazole derivatives molecular docking studies, Antibiotics 11 (2022), pp. 133–1357. doi:10.3390/antibiotics11101337.
  • U. Acar Çevik, A. Işık, A.E. Evren, Ö. Kapusız, Ü.D. Gül, Y. Özkay, and Z.A. Kaplancıklı, Synthesis of new benzimidazole derivatives containing 1,3,4-thiadiazole: Their in vitro antimicrobial, in silico molecular docking and molecular dynamic simulations studies, SAR QSAR Environ. Res. 33 (2022), pp. 899–914. doi:10.1080/1062936X.2022.2149620.
  • C. Tratrat, M. Haroun, E. Tsolaki, A. Petrou, A. Gavalas, and A. Geronikaki, Thiazole-based chalcone derivatives as potential anti-inflammatory agents: Biological evaluation and molecular modelling, Curr. Top. Med. Chem. 21 (2021), pp. 257–268. doi:10.2174/1568026621999201214232458.
  • M. Modri, M. Božiˇcevi, and I. Faraho, Design, synthesis and biological evaluation of new 1,3-thiazole derivatives as potential anti-inflammatory agents, J. Mol. Struct. 1239 (2021), pp. 130526. doi:10.1016/j.molstruc.2021.130526.
  • Α. Kryshchyshyn, Ο. Roman, Α. Lozynskyi, and R. Lesyk, Thiopyrano[2,3-d]thiazoles as new efficient scaffolds in medicinal chemistry, Sci. Pharm. 86 (2018), pp. 26–50. doi:10.3390/scipharm86020026.
  • A. Ayati, S. Emami, S. Moghimi, and A. Foroumadi, Thiazole in the targeted anticancer drug discovery, Future Med. Chem. 11 (2019), pp. 1929–1952. doi:10.4155/fmc-2018-0416.
  • D. Carbone, V. Vestuto, M.R. Ferraro, T. Ciaglia, C. Pecoraro, E. Sommella, S. Cascioferro, E. Salviati, S. Novi, M.F. Tecce, M.F. Amodio, N. Iraci, G. Cirrincione, P.D. Campiglia, A. Bertamino, B. Parrino, and C. Ostacolo, Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification, Eur. J. Med. Chem. 234 (2022), pp. 114233. doi:10.1016/j.ejmech.2022.114233.
  • S. Patchipala, V. Pasupuleti, A. Audipudi, and H. Bollikoll, Synthesis, in-vivo anti-diabetic & anticancer activities and molecular modelling studies of tetrahydrobenzo[d]thiazole tethered nicotinohydrazide derivatives, Arab. J. Chem. 15 (2022), pp. 103546. doi:10.1016/j.arabjc.2021.103546.
  • A. Petrou, P. Eleftheriou, A. Geronikaki, M.G. Akrivou, and I. Vizirianakis, Novel thiazolidin-4-ones as potential non-nucleoside inhibitors of HIV-1 reverse transcriptase, Molecules 24 (2019), pp. 3821. doi:10.3390/molecules24213821.
  • T.A. Farghaly, A.M.R. Alsaedi, N.A. Alenazi, and M.F. Harras, Anti-viral activity of thiazole derivatives: An updated patent review, Expert Opin. Ther. Pat. 32 (2022), pp. 791–815.
  • R. Meleddu, S. Distinto, A. Corona, E. Tramontano, G. Bianco, C. Melis, F. Cottiglia, and E. Maccioni, Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase, J. Enz. Inhib. Med. Chem. 32 (2017), pp. 130–136. doi:10.1080/14756366.2016.1238366.
  • M. Djukic, M. Fesatidou, I. Xenikakis, A. Geronikaki, V.T. Angelova, V. Savic, M. Pasic, B. Krilovic, D. Djukic, B. Gobeljic, M. Pavlica, A. Djuric, I. Stanojevic, D. Vojvodic, and L. Saso, In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole, Chem. Biol. Interact 286 (2018), pp. 119–131. doi:10.1016/j.cbi.2018.03.013.
  • C.C.B. Brito, H.V.C.D. Silva, D.J. Brondani, A.R. Faria, R.M. Ximenes, I.M.D. Silva, J.F.C. Albuquerque, and M.S. Castilho, Synthesis and biological evaluation of thiazole derivatives as LbSOD inhibitors, J. Enz. Inhib. Med. Chem. 34 (2019), pp. 333–342. doi:10.1080/14756366.2018.1550752.
  • C.A. Rodrigues, P.F. Dos Santos, M.O.L. da Costa, T.F.A. Pavani, P. Xander, M.M. Geraldo, A. Mengarda, J. de Moraes, and D.G.G. Rando, 4-Phenyl-1,3-thiazole-2-amines as scaffolds for new antileishmanial agents, J. Venom. Anim. Toxins Incl. Trop. Dis. 24 (2018), pp. 26. doi:10.1186/s40409-018-0163-x.
  • M.K. Kumawat, Thiazole containing heterocycles with antimalarial activity, Curr. Drug Discov. Technol. 15 (2018), pp. 196–200. doi:10.2174/1570163814666170725114159.
  • R. Kenchappa, Y.D. Bodke, S. Telkar, and M. Aruna Sindhe, Antifungal and anthelmintic activity of novel benzofuran derivatives containing thiazolo benzimidazole nucleus: An in vitro evaluation, J. Chem. Biol. 10 (2017), pp. 11–23. doi:10.1007/s12154-016-0160-x.
  • M.F. Abo-Ashour, W.M. Eldehna, A. Nocentini, H.S. Ibrahim, S. Bua, H.A. Abdel-Aziz, S.M. Abou-Seri, and C.T. Supuran, Novel synthesized SLC-0111 thiazole and thiadiazole analogues: Determination of their carbonic anhydrase inhibitory activity and molecular modeling studies, Bioorg. Chem. 87 (2019), pp. 794–802. doi:10.1016/j.bioorg.2019.04.002.
  • A. Rouf and C. Tanyeli, Bioactive thiazole and benzothiazole derivatives, Eur. J. Med. Chem. 97 (2015), pp. 911–927. doi:10.1016/j.ejmech.2014.10.058.
  • N. Kardos and A.L. Demain, Penicillin: The medicine with the greatest impact on therapeutic outcomes, Appl. Microbiol. Biotechnol. 92 (2011), pp. 677–687. doi:10.1007/s00253-011-3587-6.
  • A.C. Pasqualotto, K.O. Thiele, and L.Z. Goldani, Novel triazole antifungal drugs: Focus on isavuconazole, ravuconazole and albaconazole, Curr. Opin. Investig. Drugs 11 (2010), pp. 165–174.
  • G. Thierbach and H. Reichenbach, Myxothiazol, a new antibiotic interfering with respiration, Antimicrob. Agents Chemother. 19 (1981), pp. 504–507. doi:10.1128/AAC.19.4.504.
  • X.H. Li, X.L. Yang, Y. Ling, Z.J. Fan, X.M. Liang, D.Q. Wang, F.H. Chen, and Z.M. Li, Synthesis and fungicidal activity of novel 2-oxocycloalkylsulfonylureas, J. Agric. Food Chem. 53 (2005), pp. 2202–2206. doi:10.1021/jf0403944.
  • Y.V. Burov, V.V. Poroikov, and L.V. Korolchenko, National system for registration and biological testing of chemical compounds: Facilities for new drugs search, Bull. Natl. Centr. Biol. Act. Compnds. (Rus.) 1 (1990), pp. 4–25.
  • V.V. Poroikov, D.A. Filimonov, T.A. Gloriozova, A.A. Lagunin, D.S. Druzhilovskiy, A.V. Rudik, L.A. Stolbov, A.V. Dmitriev, O.A. Tarasova, S.M. Ivanov, and P.V. Pogodin, Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations, Russ. Chem. Bull. 68 (2019), pp. 2143–2154. doi:10.1007/s11172-019-2683-0.
  • V.V. Poroikov, D.A. Filimonov, and A.P. Boudunova, Comparison of the results of prediction of the spectra of biological activity of chemical compounds by experts and the PASS system, Aut. Doc. Math. Ling. 27 (1993), pp. 40–43.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, PASS: Prediction of activity spectra for biologically active substances, Bioinformatics 16 (2000), pp. 747–748. doi:10.1093/bioinformatics/16.8.747.
  • PASS Online. Available at http://www.way2drug.com/passonline (accessed March 20, 2022).
  • K.A. Murtazalieva, D.S. Druzhilovskiy, R.K. Goel, G.N. Sastry, and V.V. Poroikov, How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR QSAR Environ. Res. 28 (2017), pp. 843–862. doi:10.1080/1062936X.2017.1399448.
  • D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskiy, P.V. Pogodin, and V.V. Poroikov, Prediction of the biological activity spectra of organic compounds using the PASS online web resource, Chem. Heterocycl. Compnds. 50 (2014), pp. 444–457. doi:10.1007/s10593-014-1496-1.
  • V. Kartsev, B. Lichitsky, A. Geronikaki, A. Petrou, M. Smiljkovic, M. Kostic, O. Radanovic, and M. Soković, Design, synthesis and antimicrobial activity of usnic acid derivatives, Med. Chem. Comm. 9 (2018), pp. 870–882. doi:10.1039/C8MD00076J.
  • S. Simakov, V. Kartsev, A. Petrou, I. Nicolaou, A. Geronikaki, M. Ivanov, M. Kostic, J. Glamočlija, M. Soković, D. Talea, and I. Vizirianakis, 4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole acylamines as novel antimicrobial agents: Synthesis, in silico and in vitro evaluation, Pharmaceuticals 14 (2021), pp. 1096. doi:10.3390/ph14111096.
  • E. Kritsi, M.T. Matsoukas, C. Potamitis, A. Detsi, M. Ivanov, M. Sokovic, and P. Zoumpoulakis, Novel hit compounds as putative antifungals: The case of Aspergillus fumigatus, Molecules 24 (2019), pp. 3853. doi:10.3390/molecules24213853.
  • M. Aleksić, D. Stanisavljević, M. Smiljković, P. Vasiljević, M. Stevanović, M. Soković, and D. Stojković, Pyrimethanil: Between efficient fungicide against Aspergillus rot on cherry tomato and cytotoxic agent on human cell lines, Ann. Appl. Biol. 175 (2019), pp. 228–235. doi:10.1111/aab.12532.
  • M. Fesatidou, P. Zagaliotis, C. Camoutsis, A. Petrou, P. Eleftheriou, C. Tratrtat, M. Haroun, A. Geronikaki, A. Ciric, and M. Sokovic, 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation, Bioorg. Med. Chem. 26 (2018), pp. 4664–4676. doi:10.1016/j.bmc.2018.08.004.
  • T.K. Karami, S. Hailu, S. Feng, R. Graham, and H.J. Gukasyan, Eyes on Lipinski’s rule of five: A new “rule of thumb” for physicochemical design space of ophthalmic drugs, J. Ocul. Pharmacol. Ther. 38 (2022), pp. 43–55. doi:10.1089/jop.2021.0069.
  • T.E. Benson, C.T. Walsh, and V. Massey, Kinetic characterization of wild-type and S229A mutant MurB: Evidence for the role of Ser 229 as a general acid, Biochemistry 36 (1997), pp. 796–805. doi:10.1021/bi962220o.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.