142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents

, &
Pages 435-457 | Received 17 Apr 2023, Accepted 12 Jun 2023, Published online: 27 Jun 2023

References

  • World Health Organization, Global tuberculosis report 2022 (2022). Available at https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022.
  • M.I. Gröschel, F. Sayes, R. Simeone, L. Majlessi, and R. Brosch, ESX secretion systems: Mycobacterial evolution to counter host immunity, Nat. Rev. Microbiol. 14 (2016), pp. 677–691. doi:10.1038/nrmicro.2016.131.
  • Q. Chai, Y. Zhang, and C.H. Liu, Mycobacterium tuberculosis: An adaptable pathogen associated with multiple human diseases, Front. Cell. Infect. Microbiol. 8 (2018), pp. 1–15. doi:10.3389/fcimb.2018.00158.
  • M. Caws, G. Thwaites, S. Dunstan, T.R. Hawn, N.T. Lan, N.T. Thuong, K. Stepniewska, M.N. Huyen, N.D. Bang, T.H. Loc, S. Gagneux, D. van Soolingen, K. Kremer, M. van der Sande, P. Small, P.T. Anh, N.T. Chinh, H.T. Quy, N.T. Duyen, D.Q. Tho, N.T. Hieu, E. Torok, T.T. Hien, N.H. Dung, N.T. Nhu, P.M. Duy, N. van Vinh Chau, and J. Farrar, The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis, PLoS Pathog. 4 (2008), pp. e1000034. doi:10.1371/journal.ppat.1000034.
  • H. Esmail, C.E. Barry III, D.B. Young, and R.J. Wilkinson, The ongoing challenge of latent tuberculosis, Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (2014), pp. 20130437. doi:10.1098/rstb.2013.0437.
  • M.G. Moule and J.D. Cirillo, Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis, Front. Cell. Infect. Microbiol. 10 (2020), pp. 1–12. doi:10.3389/fcimb.2020.00065.
  • M.A. Aziz, A. Wright, A. Laszlo, A. De Muynck, F. Portaels, A. Van Deun, C. Wells, P. Nunn, L. Blanc, and M. Raviglione, Epidemiology of antituberculosis drug resistance (the global project on anti-tuberculosis drug resistance surveillance): An updated analysis, Lancet 368 (2006), pp. 2142–2154. doi:10.1016/s0140-6736(06)69863-2.
  • K.J. Seung, S. Keshavjee, and M.L. Rich, Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis, Cold Spring Harb. Perspect. Med. 5 (2015), pp. a017863. doi:10.1101/cshperspect.a017863.
  • A.K. Saxena and A. Singh, Mycobacterial tuberculosis enzyme targets and their inhibitors, Curr. Top. Med. Chem. 19 (2019), pp. 337–355. doi:10.2174/1568026619666190219105722.
  • S. Ahmed, S. Nandi, and A.K. Saxena, An updated patent review on drugs for the treatment of tuberculosis (2018-present), Expert Opin. Ther. Pat. 32 (2022), pp. 243–260. doi:10.1080/13543776.2022.2012151.
  • S. Nandi, M. Saxena, and A.K. Saxena, Important targets and inhibitors of Mycobacterium tuberculosis, in Tuberculosis: Integrated Studies for a Complex Disease, N. Rezaei, ed., Springer International Publishing, Cham, 2023, pp. 429–457.
  • K.K. Roy, S. Singh, S.K. Sharma, R. Srivastava, V. Chaturvedi, and A.K. Saxena, Synthesis and biological evaluation of substituted 4-arylthiazol-2-amino derivatives as potent growth inhibitors of replicating Mycobacterium tuberculosis H37RV, Bioorg. Med. Chem. Lett. 21 (2011), pp.5589–5593. doi:10.1016/j.bmcl.2011.06.076.
  • A.K. Saxena, K.K. Roy, S. Singh, S.P. Vishnoi, A. Kumar, V.K. Kashyap, L. Kremer, R. Srivastava, and B.S. Srivastava, Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia, Int. J. Antimicrob. Agents 42 (2013), pp. 27–35. doi:10.1016/j.ijantimicag.2013.03.007.
  • S.R. Khan, S. Singh, K.K. Roy, M.S. Akhtar, A.K. Saxena, and M.Y. Krishnan, Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase, Int. J. Antimicrob. Agents 41 (2013), pp. 41–46. doi:10.1016/j.ijantimicag.2012.09.012.
  • S. Janardhan, L. John, M. Prasanthi, V. Poroikov, and G. Narahari Sastry, A QSAR and molecular modelling study towards new lead finding: Polypharmacological approach to Mycobacterium tuberculosis, SAR QSAR Environ. Res. 28 (2017), pp. 815–832. doi:10.1080/1062936X.2017.1398782.
  • S. Nandi, S. Ahmed, and A.K. Saxena, Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling, SAR QSAR Environ. Res. 29 (2018), pp. 151–170. doi:10.1080/1062936X.2017.1419375.
  • P. Kamsri, A. Punkvang, S. Hannongbua, K. Suttisintong, P. Kittakoop, J. Spencer, A.J. Mulholland, and P. Pungpo, In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations, SAR QSAR Environ. Res. 30 (2019), pp. 775–800. doi:10.1080/1062936X.2019.1658218.
  • H. Verma, S. Choudhary, M. Kumar, and O. Silakari, In silico guided design of non-covalent inhibitors of DprE1: Synthesis and biological evaluation, SAR QSAR Environ. Res. 32 (2021), pp. 333–352. doi:10.1080/1062936X.2021.1900390.
  • The Working Group for New TB Drugs, Clinical Pipeline (2023). Available at https://www.newtbdrugs.org/pipeline/clinical.
  • S.P. Alexander, H.D. Andreas, T. Shen-Jie, C. Francesca, D. Manfred, C. Charoen, V. Irina, A. Koen, B. Nyasha, M. Tine De, H.-T. Myriam, L. Nacer, M. Paul, B. Ben Van, P.G.V.H. Rolf, and D. Brian, Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis, Eur. Respir. J. 47 (2016), pp. 564–574. doi:10.1183/13993003.00724-2015.
  • R. Mahajan, Bedaquiline: First FDA-approved tuberculosis drug in 40 years, Int. J. Appl. Basic Med. Res. 3 (2013), pp. 1–2. doi:10.4103/2229-516X.112228.
  • S.-H. Wu, -H.-H. Chan, H.-C. Hsiao, and R. Jou, Primary bedaquiline resistance among cases of drug-resistant tuberculosis in Taiwan, Front. Microbiol. 12 (2021), pp. 1–10. doi:10.3389/fmicb.2021.754249.
  • G. Degiacomi, J.C. Sammartino, V. Sinigiani, P. Marra, A. Urbani, and M.R. Pasca, In vitro study of bedaquiline resistance in Mycobacterium tuberculosis multi-drug resistant clinical isolates, Front. Microbiol. 11 (2020), pp. 1–8. doi:10.3389/fmicb.2020.559469.
  • T.V.A. Nguyen, R.M. Anthony, A.-L. Bañuls, T.V.A. Nguyen, D.H. Vu, and J.-W.C. Alffenaar, Bedaquiline resistance: Its emergence, mechanism, and prevention, Clin. Infect. Dis. 66 (2017), pp. 1625–1630. doi:10.1093/cid/cix992.
  • N. Camus, M. James, B. Kayleen, M. Sashen, D. Lucy van, L. Keeren, W. Allison, D.G. Alison, B. Francois, S.P. Alexander, P. Nesri, O. Max, and Donnell, Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients, Eur. Respir. J. 55 (2020), pp. 1902383. doi:10.1183/13993003.02383-2019.
  • N.A. Ismail, S.V. Omar, H. Moultrie, Z. Bhyat, F. Conradie, M. Enwerem, H. Ferreira, J. Hughes, L. Joseph, Y. Kock, V. Letsaolo, G. Maartens, G. Meintjes, D. Ngcamu, N. Okozi, X. Padanilam, A. Reuter, R. Romero, S. Schaaf, J. te Riele, E. Variava, M. van der Meulen, F. Ismail, and N. Ndjeka, Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: A cross-sectional and longitudinal study, Lancet Infect. Dis. 22 (2022), pp. 496–506. doi:10.1016/S1473-3099(21)00470-9.
  • G.P. Mishra and J. Mulani, Implications of bedaquiline-resistant tuberculosis, Lancet Infect. Dis. 22 (2022), pp. 166. doi:10.1016/S1473-3099(22)00007-X.
  • R. Girase, I. Ahmad, R. Pawara, and H. Patel, Optimizing cardio, hepato and phospholipidosis toxicity of the bedaquiline by chemoinformatics and molecular modelling approach, SAR QSAR Environ. Res. 33 (2022), pp. 215–235. doi:10.1080/1062936X.2022.2041724.
  • W. Yu and A.D. MacKerell, Computer-aided drug design methods, in Antibiotics: Methods and Protocols, P. Sass, ed., Springer, New York, NY, 2017, pp. 85–106.
  • H.M. Baig, K. Ahmad, G. Rabbani, M. Danishuddin, and I. Choi, Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders, Curr. Neuropharmacol. 16 (2018), pp. 740–748. doi:10.2174/1570159X15666171016163510.
  • P. Prathipati, A. Dixit, and K.A. Saxena, Computer-aided drug design: Integration of structure-based and ligand-based approaches in drug design, Curr. Comput. Aided Drug. Des. 3 (2007), pp. 133–148. doi:10.2174/157340907780809516.
  • M. Batool, B. Ahmad, and S. Choi, A structure-based drug discovery paradigm, Int. J. Mol. Sci. 20 (2019), pp. 1–18. doi:10.3390/ijms20112783.
  • A.C. Anderson, The process of structure-based drug design, Chem. Biol. 10 (2003), pp. 787–797. doi:10.1016/j.chembiol.2003.09.002.
  • S.S. Bhunia, M. Saxena, and A.K. Saxena, Ligand- and structure-based virtual screening in drug discovery, in Biophysical and Computational Tools in Drug Discovery, A.K. Saxena, ed., Springer International Publishing, Cham, 2021, pp. 281–339.
  • E. Lionta, G. Spyrou, D.K. Vassilatis, and Z. Cournia, Structure-based virtual screening for drug discovery: Principles, applications and recent advances, Curr. Top. Med. Chem. 14 (2014), pp. 1923–1938. doi:10.2174/1568026614666140929124445.
  • H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, The protein data bank, Nucleic Acids Res. 28 (2000), pp. 235–242. doi:10.1093/nar/28.1.235.
  • A. Bortolato, M. Fanton, J.S. Mason, and S. Moro, Molecular docking methodologies, in Biomolecular Simulations: Methods and Protocols, L. Monticelli and E. Salonen, eds., Humana Press, Totowa, NJ, 2013, pp. 339–360.
  • D.B. Kitchen, H. Decornez, J.R. Furr, and J. Bajorath, Docking and scoring in virtual screening for drug discovery: Methods and applications, Nat. Rev. Drug Discov. 3 (2004), pp. 935–949. doi:10.1038/nrd1549.
  • N.S. Pagadala, K. Syed, and J. Tuszynski, Software for molecular docking: A review, Biophys. Rev. 9 (2017), pp. 91–102. doi:10.1007/s12551-016-0247-1.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749. doi:10.1021/jm0306430.
  • E. Yuriev, M. Agostino, and P.A. Ramsland, Challenges and advances in computational docking: 2009 in review, J. Mol. Recognit. 24 (2011), pp. 149–164. doi:10.1002/jmr.1077.
  • J. Ren, Y. He, W. Chen, T. Chen, G. Wang, Z. Wang, Z. Xu, X. Luo, W. Zhu, H. Jiang, J. Shen, and Y. Xu, Thermodynamic and structural characterization of halogen bonding in protein–ligand interactions: A case study of PDE5 and its inhibitors, J. Med. Chem. 57 (2014), pp. 3588–3593. doi:10.1021/jm5002315.
  • Y. Yang, Z. Xu, Z. Zhang, Z. Yang, Y. Liu, J. Wang, T. Cai, S. Li, K. Chen, J. Shi, and W. Zhu, Like-charge guanidinium pairing between ligand and receptor: An unusual interaction for drug discovery and design? J. Phys. Chem. B 119 (2015), pp. 11988–11997. doi:10.1021/acs.jpcb.5b04130.
  • F. Spyrakis and C.N. Cavasotto, Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description, Arch. Biochem. Biophys. 583 (2015), pp. 105–119. doi:10.1016/j.abb.2015.08.002.
  • J. Li, A. Fu, and L. Zhang, An overview of scoring functions used for protein–ligand interactions in molecular docking, Interdiscip. Sci. Comput. Life Sci. 11 (2019), pp. 320–328. doi:10.1007/s12539-019-00327-w.
  • S. Ahmed, A.E. Prabahar, and A.K. Saxena, Molecular docking-based interactions in QSAR studies on Mycobacterium tuberculosis ATP synthase inhibitors, SAR QSAR Environ. Res. 33 (2022), pp. 289–305. doi:10.1080/1062936X.2022.2066175.
  • S. Singh, K.K. Roy, S.R. Khan, V.K. Kashyap, A. Sharma, S. Jaiswal, S.K. Sharma, M.Y. Krishnan, V. Chaturvedi, J. Lal, S. Sinha, A. Dasgupta, R. Srivastava, and A.K. Saxena, Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis, Bioorg. Med. Chem. 23 (2015), pp. 742–752. doi:10.1016/j.bmc.2014.12.060.
  • S. Singh, S.R.K. K.K.Roy, V.K. Kashyap, S.K. Sharma, M.Y. Krishnan, V. Chaturvedi, S.K. Sinha, R. Shrivastava, and A.K. Saxena, N-(3-((diethylamino) methyl)-4-hydroxyphenyl)-n-(quinolin-4-yl) sulfonamides for the treatment of tuberculosis and process of preparation thereof, WO2013102936A1, 2013.
  • S.S. Chaudhaery, K.K. Roy, N. Shakya, G. Saxena, S.R. Sammi, A. Nazir, C. Nath, and A.K. Saxena, Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: Pharmacophore-based virtual screening, synthesis, and pharmacology, J. Med. Chem. 53 (2010), pp. 6490–6505. doi:10.1021/jm100573q.
  • K.K. Roy, C.N. S.Tota, R. Shukla, and A.K. Saxena, Substituted 1, 2, 3, 4-tetrahydroquinolin-7-yl carbamates as acetylcholinesterase inhibitors for treatment of Alzheimer’s disease, US20130324573A1, 2012.
  • S.S. Bhunia, A. Misra, I.A. Khan, S. Gaur, M. Jain, S. Singh, A. Saxena, T. Hohlfield, M. Dikshit, and A.K. Saxena, Novel glycoprotein VI antagonists as antithrombotics: Synthesis, biological evaluation, and molecular modeling studies on 2,3-disubstituted tetrahydropyrido (3,4-b)indoles, J. Med. Chem. 60 (2017), pp. 322–337. doi:10.1021/acs.jmedchem.6b01360.
  • S. Gaur, Z. Fatima, A. Dixit, Z. Ali, W.R. Surin, K. Kapoor, K. Bhutani, M.S. Ansari, M. Dikshit, and A.K. Saxena, 2-Alkyl/aryl sulphonyl-1,2,3,4-tetrahydro-9H-pyrido(3,4-b) indole-3-carboxylic acid esters/amides useful as antithrombotic agents, US20070287723A1, 2004.
  • S.J. Tantry, S.D. Markad, V. Shinde, J. Bhat, G. Balakrishnan, A.K. Gupta, A. Ambady, A. Raichurkar, C. Kedari, S. Sharma, N.V. Mudugal, A. Narayan, C.N. Naveen Kumar, R. Nanduri, S. Bharath, J. Reddy, V. Panduga, K.R. Prabhakar, K. Kandaswamy, R. Saralaya, P. Kaur, N. Dinesh, S. Guptha, K. Rich, D. Murray, H. Plant, M. Preston, H. Ashton, D. Plant, J. Walsh, P. Alcock, K. Naylor, M. Collier, J. Whiteaker, R.E. McLaughlin, M. Mallya, M. Panda, S. Rudrapatna, V. Ramachandran, R. Shandil, V.K. Sambandamurthy, K. Mdluli, C.B. Cooper, H. Rubin, T. Yano, P. Iyer, S. Narayanan, S. Kavanagh, K. Mukherjee, V. Balasubramanian, V.P. Hosagrahara, S. Solapure, S. Ravishankar, and S.P. Hameed, Discovery of Imidazo[1,2- a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial Adenosine Triphosphate (ATP) synthesis, J. Med. Chem. 60 (2017), pp. 1379–1399. doi:10.1021/acs.jmedchem.6b01358.
  • D. Kalia, A.K.K. S, G. Meena, K.P. Sethi, R. Sharma, P. Trivedi, S.R. Khan, A.S. Verma, S. Singh, S. Sharma, K.K. Roy, R. Kant, M.Y. Krishnan, B.N. Singh, S. Sinha, V. Chaturvedi, A.K. Saxena, and D.K. Dikshit, Synthesis and anti-tubercular activity of conformationally-constrained and bisquinoline analogs of TMC207, Med. Chem. Commun. 6 (2015), pp. 1554–1563. doi:10.1039/C5MD00131E.
  • BIOVIA, Biovia Draw 19.1, Dassault Systemes, San Diego, 2019.
  • LigPrep version 2.3. Schrödinger, LLC., NewYork, NY, 2009. Available at http://www.schrodinger.com.
  • Schrödinger version 9.0. Schrödinger, LLC., NewYork, NY, 2009. Available at http://www.schrodinger.com.
  • L. Preiss, J.D. Langer, Ö. Yildiz, L. Eckhardt-Strelau, J.E.G. Guillemont, A. Koul, and T. Meier, Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline, Sci. Adv. 1 (2015), pp. e1500106. doi:10.1126/sciadv.1500106.
  • Protein preparation wizard. Schrödinger, LLC., NewYork, NY, 2009. Available at http://www.schrodinger.com.
  • Glide version 5.5. Schrödinger, LLC., NewYork, NY, 2009. Available at http://www.schrodinger.com.
  • BIOVIA, Discovery Studio Visualizer 20.1.0, Dassault Systemes, San Diego, 2020.
  • Minitab version 14. 2005. Available at http://www.minitab.com/en-US/products/minitab/default.aspx.
  • J. Guillemont, C. Meyer, A. Poncelet, X. Bourdrez, and K. Andries, Diarylquinolines, synthesis pathways and quantitative structure–activity relationship studies leading to the discovery of TMC207, Future Med. Chem. 3 (2011), pp. 1345–1360. doi:10.4155/fmc.11.79.
  • S.A. Hollingsworth and R.O. Dror, Molecular dynamics simulation for all, Neuron 99 (2018), pp. 1129–1143. doi:10.1016/j.neuron.2018.08.011.
  • S. Bernèche and B. Roux, Energetics of ion conduction through the K+ channel, Nature 414 (2001), pp. 73–77. doi:10.1038/35102067.
  • J. Li, S.A. Shaikh, G. Enkavi, P.C. Wen, Z. Huang, and E. Tajkhorshid, Transient formation of water-conducting states in membrane transporters, Proc. Natl. Acad. Sci. USA 110 (2013), pp. 7696–7701. doi:10.1073/pnas.1218986110.
  • R.O. Dror, H.F. Green, C. Valant, D.W. Borhani, J.R. Valcourt, A.C. Pan, D.H. Arlow, M. Canals, J.R. Lane, R. Rahmani, J.B. Baell, P.M. Sexton, A. Christopoulos, and D.E. Shaw, Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs, Nature 503 (2013), pp. 295–299. doi:10.1038/nature12595.
  • D. Wacker, S. Wang, J.D. McCorvy, R.M. Betz, A.J. Venkatakrishnan, A. Levit, K. Lansu, Z.L. Schools, T. Che, D.E. Nichols, B.K. Shoichet, R.O. Dror, and B.L. Roth, Crystal structure of an LSD-bound human serotonin receptor, Cell 168 (2017), pp. 377–389.e12. doi:10.1016/j.cell.2016.12.033.
  • M. Vendruscolo and C.M. Dobson, Protein dynamics: Moore’s law in molecular biology, Curr. Biol. 21, 2 (2011), pp. R68–70. doi:10.1016/j.cub.2010.11.062.
  • K. Lindorff-Larsen, S. Piana, R.O. Dror, and D.E. Shaw, How fast-folding proteins fold, Science 334 (2011), pp. 517–520. doi:10.1126/science.1208351.
  • S. Piana, J.L. Klepeis, and D.E. Shaw, Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations, Curr. Opin. Struct. Biol. 24 (2014), pp. 98–105. doi:10.1016/j.sbi.2013.12.006.
  • H.I. Ingólfsson, C.A. Lopez, J.J. Uusitalo, D.H. de Jong, S.M. Gopal, X. Periole, and S.J. Marrink, The power of coarse graining in biomolecular simulations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (2014), pp. 225–248. doi:10.1002/wcms.1169.
  • P.J. Bond, J. Holyoake, A. Ivetac, S. Khalid, and M.S. Sansom, Coarse-grained molecular dynamics simulations of membrane proteins and peptides, J. Struct. Biol. 157 (2007), pp. 593–605. doi:10.1016/j.jsb.2006.10.004.
  • G.A. Voth (ed.), Coarse-graining of Condensed Phase and Biomolecular Systems, CRC press, Boca Raton, 2008.
  • M. Rueda, C. Ferrer-Costa, T. Meyer, A. Pérez, J. Camps, A. Hospital, J.L. Gelpí, and M. Orozco, A consensus view of protein dynamics, Proc. Natl. Acad. Sci. USA 104 (2007), pp. 796–801. doi:10.1073/pnas.0605534104.
  • M. Orozco, L. Orellana, A. Hospital, A.N. Naganathan, A. Emperador, O. Carrillo, and J.L. Gelpí, Coarse-grained representation of protein flexibility. Foundations, successes, and shortcomings, Adv. Protein Chem. Struct. Biol. 85 (2011), pp. 183–215. doi:10.1016/b978-0-12-386485-7.00005-3.
  • Sumera, F. Anwer, M. Waseem, A. Fatima, N. Malik, and A. Ali, Molecular docking and molecular dynamics studies reveal secretory proteins as novel targets of temozolomide in glioblastoma multiforme, Molecules 27 (2022), pp. 1–16. doi:10.3390/molecules27217198.
  • T. Julaton, A. Taclendo, G. Oyong, O. Rempillo, M.C. Galvez, and E. Vallar, In silico insights on the pro-inflammatory potential of polycyclic aromatic hydrocarbons and the prospective anti-inflammatory capacity of Andrographis paniculata phytocompounds, Int. J. Environ. Res. Public Health 19 (2022), pp. 1–31. doi:10.3390/ijerph19148588.
  • Y. Yuniwati, M.F.R. Syaban, S.G. Anoraga, and F.L. Sabila, Molecular docking approach of Bryophyllum pinnatum compounds as atherosclerosis therapy by targeting adenosine monophosphate-activated protein kinase and inducible nitric oxide synthase, Acta. Inform. Med. 30 (2022), pp. 91–95. doi:10.5455/aim.2022.30.91-95.
  • M. Jamroz, A. Kolinski, and S. Kmiecik, CABS-flex: Server for fast simulation of protein structure fluctuations, Nucleic Acids Res. 41 (2013), pp. W427–31. doi:10.1093/nar/gkt332.
  • M. Jamroz, M. Orozco, A. Kolinski, and S. Kmiecik, Consistent view of protein fluctuations from all-atom molecular dynamics and coarse-grained dynamics with knowledge-based force-field, J. Chem. Theory Comput. 9 (2013), pp. 119–125. doi:10.1021/ct300854w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.