194
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach

&
Pages 459-474 | Received 29 May 2023, Accepted 15 Jun 2023, Published online: 23 Jun 2023

References

  • A. McWilliams, Nanotechnology: A Realistic Market Assessment, BCC Research, Wellesley, MA, 2010.
  • G. Forloni, Responsible nanotechnology development, J. Nanopart. Res. 14 (2012), pp. 1–7. doi:10.1007/s11051-012-1007-1.
  • K.L. Dreher, Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles, Toxicol. Sci. 77 (2004), pp. 3–5. doi:10.1093/toxsci/kfh041.
  • C. Oksel, C.Y. Ma, J.J. Liu, T. Wilkins, and X.Z. Wang, (Q) SAR modelling of nanomaterial toxicity: A critical review, Particuology 21 (2015), pp. 1–9. doi:10.1016/j.partic.2014.12.001.
  • T. Puzyn, N. Jeliazkova, H. Sarimveis, R.L. Robinson, V. Lobaskin, R. Rallo, A.N. Richarz, A. Gajewicz, M.G. Papadopulos, J. Hastings, and M.T. Cronin, Perspectives from the nanosafety modelling cluster on the validation criteria for (Q) SAR models used in nanotechnology, Food Chem. Toxicol. 112 (2018), pp. 478–494. doi:10.1016/j.fct.2017.09.037.
  • E. Wyrzykowska, A. Mikolajczyk, I. Lynch, N. Jeliazkova, N. Kochev, H. Sarimveis, P. Doganis, P. Karatzas, A. Afantitis, G. Melagraki, and A. Serra, Representing and describing nanomaterials in predictive nanoinformatics, Nat. Nanotechnol. 17 (2022), pp. 924–932. doi:10.1038/s41565-022-01173-6.
  • G. Oberdörster, E. Oberdörster, and J. Oberdörster, Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005), pp. 823–839. doi:10.1289/ehp.7339.
  • P. Rivera Gil, G. Oberdörster, A. Elder, V. Puntes, and W.J. Parak, Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future, ACS Nano 4 (2010), pp. 5527–5531. doi:10.1021/nn1025687.
  • T. Puzyn, D. Leszczynska, and J. Leszczynski, Toward the development of “nano‐QSARs”: Advances and challenges, Small 5 (2009), pp. 2494–2509. doi:10.1002/smll.200900179.
  • T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T.P. Dasari, A. Michalkova, H.M. Hwang, A. Toropov, D. Leszczynska, and J. Leszczynski, Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nat. Nanotechnol. 6 (2011), pp. 175–178. doi:10.1038/nnano.2011.10.
  • R. Liu, H.Y. Zhang, Z.X. Ji, R. Rallo, T. Xia, C.H. Chang, A. Nel, and Y. Cohen, Development of structure–activity relationship for metal oxide nanoparticles, Nanoscale 5 (2013), pp. 5644–5653. doi:10.1039/c3nr01533e.
  • A.A. Toropov, A.P. Toropova, E. Benfenati, G. Gini, T. Puzyn, D. Leszczynska, and J. Leszczynski, Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli, Chemosphere 89 (2012), pp. 1098–1102. doi:10.1016/j.chemosphere.2012.05.077.
  • W.S. Cho, R. Duffin, C.A. Poland, S.E. Howie, W. MacNee, M. Bradley, I.L. Megson, and K. Donaldson, Metal oxide nanoparticles induce unique inflammatory footprints in the lung: Important implications for nanoparticle testing, Environ. Health Perspect. 118 (2010), pp. 1699–1706. doi:10.1289/ehp.1002201.
  • M. Zhu, Y. Li, J. Shi, W. Feng, G. Nie, and Y. Zhao, Exosomes as extrapulmonary signaling conveyors for nanoparticle‐induced systemic immune activation, Small 8 (2012), pp. 404–412. doi:10.1002/smll.201101708.
  • R. Li, Z. Ji, C.H. Chang, D.R. Dunphy, X. Cai, H. Meng, H. Zhang, B. Sun, X. Wang, J. Dong, and S. Lin, Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design, ACS Nano 8 (2014), pp. 1771–1783. doi:10.1021/nn406166n.
  • Y. Huang, X. Li, S. Xu, H. Zheng, L. Zhang, J. Chen, H. Hong, R. Kusko, and R. Li, Quantitative structure–activity relationship models for predicting inflammatory potential of metal oxide nanoparticles, Environ. Health Perspect. 128 (2020), pp. 067010. doi:10.1289/EHP6508.
  • P. De, S. Kar, K. Roy, and J. Leszczynski, Second generation periodic table-based descriptors to encode toxicity of metal oxide nanoparticles to multiple species: QSTR modeling for exploration of toxicity mechanisms, Environ. Sci. Nano 5 (2018), pp. 2742–2760. doi:10.1039/C8EN00809D.
  • P. Mitteroecker and F. Bookstein, Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics, Evol. Biol. 38 (2011), pp. 100–114. doi:10.1007/s11692-011-9109-8.
  • K. Roy, I. Mitra, S. Kar, P.K. Ojha, R.N. Das, and H. Kabir, Comparative studies on some metrics for external validation of QSPR models, J. Chem. Inf. Model. 52 (2012), pp. 396–408. doi:10.1021/ci200520g.
  • K. Roy, P. Ambure, and S. Kar, How precise are predictions from our QSAR models for new query compounds, ACS Omega 3 (2018), pp. 11392–11406. doi:10.1021/acsomega.8b01647.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • P. Grammatica, Principles of QSAR models validation: Internal and external, QSAR, ACS Comb. Sci. 26 (2007), pp. 694–701.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375. doi:10.1289/ehp.5758.
  • S. Kar, A. Gajewicz, T. Puzyn, K. Roy, and J. Leszczynski, Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: A mechanistic QSTR approach, Ecotoxicol. Environ. Saf. 107 (2014), pp. 162–169. doi:10.1016/j.ecoenv.2014.05.026.
  • J. Roy and K. Roy, Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells, Nanotoxicology 16 (2022), pp. 629–644. doi:10.1080/17435390.2022.2132887.
  • T. Lozano-Fernández, L. Ballester-Antxordoki, N. Pérez-Temprano, E. Rojas, D. Sanz, M. Iglesias-Gaspar, S. Moya, Á. González-Fernández, and M. Rey, Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4, Nanotechnol. Biol. Med. 10 (2014), pp. 1301–1310. doi:10.1016/j.nano.2014.03.007.
  • M. Pettersson, S. Almlin, G.E. Romanos, and A. Johansson, Ti ions induce IL-1β release by activation of the NLRP3 inflammasome in a human macrophage cell line, Inflammation 45 (2022), pp. 2027–2037. doi:10.1007/s10753-022-01672-7.
  • J. Roy and K. Roy, Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me Ox NPs) used in nanomedicines: A mechanistic QSAR approach, Environ. Sci. Nano 9 (2022), pp. 3456–3470. doi:10.1039/D2EN00303A.
  • S. Kang, M. Pinault, L.D. Pfefferle, and M. Elimelech, Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir 23 (2007), pp. 8670–8673. doi:10.1021/la701067r.
  • S.C. Segerstrom and G.E. Miller, Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry, Psychol. Bull. 130 (2004), pp. 601–630. doi:10.1037/0033-2909.130.4.601.
  • R. Kumazawa, F. Watari, N. Takashi, Y. Tanimura, M. Uo, and Y. Totsuka, Effects of Ti ions and particles on neutrophil function and morphology, Biomaterials 23 (2002), pp. 3757–3764. doi:10.1016/s0142-9612(02)00115-1.
  • Y. Mu, T. Kobayashi, M. Sumita, A. Yamamoto, and T. Hanawa, Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro, J. Biomed. Mater. Res. 49 (2000), pp. 238–243. doi:10.1002/(SICI)1097-4636(200002)49:2<238::AID-JBM12>3.0.CO;2-J.
  • A. Shah and M.A. Dobrovolskaia, Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations, Nanotechnol. Biol. Med. 14 (2018), pp. 977–990. doi:10.1016/j.nano.2018.01.014.
  • R. Simon-Vazquez, T. Lozano-Fernandez, A. Davila-Grana, and A. Gonzalez-Fernandez, Metal oxide nanoparticles interact with immune cells and activate different cellular responses, Int. J. Nanomed. 11 (2016), pp. 4657. doi:10.2147/IJN.S110465.
  • E.Y. Chen, M. Garnica, Y.C. Wang, A.J. Mintz, C.S. Chen, and W.C. Chin, A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells, Part. Fibre Toxicol. 9 (2012), pp. 1–10. doi:10.1186/1743-8977-9-2.
  • J.D. Walker, M. Enache, and J.C. Dearden, Quantitative cationic‐activity relationships for predicting toxicity of metals, Environ. Toxicol. Chem. 22 (2003), pp. 1916–1935. doi:10.1897/02-568.
  • P. Samir and T.D. Kanneganti, Hidden aspects of valency in immune system regulation, Trends Immunol. 40 (2019), pp. 1082–1094. doi:10.1016/j.it.2019.10.005.
  • A. Nel, T. Xia, L. Madler, and N. Lin, Ti is an abundant element in soil and appears in a variety of forms including primary and secondary minerals as well as organically bound and amorphous compounds, Science 311 (2006), pp. 622–627. doi:10.1126/science.1114397.
  • K. Roy, P. Ambure, S. Kar, and P.K. Ojha, Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemom. 32 (2018), pp. 2992. doi:10.1002/cem.2992.
  • K. Roy, P. Ambure, and R.B. Aher, How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models, Chemometr. Intell. Lab. Sys. 162 (2017), pp. 44–54. doi:10.1016/j.chemolab.2017.01.010.
  • J. Auwerx, The human leukemia cell line, THP-1: A multi-facetted model for the study of monocyte-macrophage differentiation, Experientia 47 (1991), pp. 22–31. doi:10.1007/BF02041244.
  • M. Geiser, Update on macrophage clearance of inhaled micro-and nanoparticles, J. Aerosol Med. Pulm. 23 (2010), pp. 207–217. doi:10.1089/jamp.2009.0797.
  • J. Foussereau and P. Laugier, Allergic eczemas from metallic foreign bodies, rans, St. John’s Hosp. Dermatol. Soc. 52 (1966), pp. 220–225.
  • L. Büdinger, M. Hertl, and L. Büdinger, Immunologic mechanisms in hypersensitivity reactions to metal ions: An overview, Allergy 55 (2000), pp. 108–115. doi:10.1034/j.1398-9995.2000.00107.x.
  • P. Bonaventura, A. Lamboux, F. Albarède, and P. Miossec, Differential effects of TNF-α and IL-1β on the control of metal metabolism and cadmium-induced cell death in chronic inflammation, PLoS One 13 (2018), pp. 0196285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.