150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Utilizing machine learning techniques to predict the blood-brain barrier permeability of compounds detected using LCQTOF-MS in Malaysian Kelulut honey

ORCID Icon, ORCID Icon & ORCID Icon
Pages 475-500 | Received 20 Apr 2023, Accepted 24 Jun 2023, Published online: 06 Jul 2023

References

  • P. Moingeon, M. Kuenemann, and M. Guedj, Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine, Drug Discov. Today 27 (2022), pp. 215–222. doi:10.1016/j.drudis.2021.09.006.
  • K. Singh, V.B. Yadav, U. Yadav, G. Nath, A. Srivastava, P. Zamboni, P. Kerkar, P.S. Saxena, and A.V. Singh, Evaluation of biogenic nanosilver-acticoat for wound healing: A tri-modal in silico, in vitro and in vivo study, Coll. Surf. A Physicochem. Eng. Asp. 670 (2023), pp. 131575. doi:10.1016/j.colsurfa.2023.131575.
  • S.J. Maceachern and N.D. Forkert, Machine learning for precision medicine, Genome 64 (2021), pp. 416–425. doi:10.1139/gen-2020-0131.
  • I.H. Rizvi, C. Raychaudhury, and D. Pal, Combinatorial Drug Discovery from Activity-Related Substructure Identification, Springer, Cham, New York City, 2019.
  • S. Hayat, S. Wang, and J.B. Liu, Valency-based topological descriptors of chemical networks and their applications, Appl. Math. Model. 60 (2018), pp. 164–178. doi:10.1016/j.apm.2018.03.016.
  • F. İslamoğlu and E. Hacıfazlıoğlu, Investigation of the usability of some triazole derivative compounds as drug active ingredients by ADME and molecular docking properties, Moroccan J. Chem. 4 (2022), pp. 861–880.
  • P. Agarwal, J. Huckle, J. Newman, and D.L. Reid, Trends in small molecule drug properties: A developability molecule assessment perspective, Drug Discov. Today 27 (2022), pp. 103366. doi:10.1016/j.drudis.2022.103366.
  • M.Y. Ansari, V. Chandrasekar, A.V. Singh, and S.P. Dakua, Re-routing drugs to blood brain barrier: A comprehensive analysis of machine learning approaches with fingerprint amalgamation and data balancing, IEEE Access 11 (2023), pp. 9890–9906. doi:10.1109/ACCESS.2022.3233110.
  • A.A. Dar, SEPARATION chromatography: An important tool for drug discovery, J. Sep. Sci. 43 (2020), pp. 105–119. doi:10.1002/jssc.201900656.
  • C. Türkeş and Ş. Beydemir, Inhibition of human serum paraoxonase-i with antimycotic drugs: In vitro and in silico studies, Appl. Biochem. Biotechnol. 190 (2019), pp. 252–269. doi:10.1007/s12010-019-03073-3.
  • O.M. Darwesh, R.H. Mahmoud, S.M. Abdo, and D.A. Marrez, Isolation of Haematococcus lacustris as source of novel anti-multi-antibiotic resistant microbes agents; fractionation and identification of bioactive compounds, Biotechnol. Rep. 35 (2022), pp. e00753. doi:10.1016/j.btre.2022.e00753.
  • B. Sidders, A. Karlsson, L. Kitching, R. Torella, P. Karila, and A. Phelan, Network-based drug discovery : Coupling network pharmacology with phenotypic screening for neuronal excitability, J. Mol. Biol. 430 (2018), pp. 3005–3015. doi:10.1016/j.jmb.2018.07.016.
  • M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, KNIME analytics platform [Version 4.6.0, Switzerland], 2007; software available at https://www.knime.com.
  • M. Svecla, G. Garrone, F. Faré, G. Aletti, G.D. Norata, and G. Beretta, DDASSQ: An open-source, multiple peptide sequencing strategy for label free quantification based on an OpenMS pipeline in the KNIME analytics platform, Proteomics 21 (2021), pp. 1–12. doi:10.1002/pmic.202000319.
  • A.V. Singh, V. Chandrasekar, N. Paudel, P. Laux, A. Luch, D. Gemmati, V. Tissato, K.S. Prabhu, S. Uddin, and S.P. Dakua, Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology, Biomed. Pharmacother. 163 (2023), pp. 114784. doi:10.1016/j.biopha.2023.114784.
  • S. Alsenan, I. Al-turaiki, and A. Hafez, A recurrent neural network model to predict blood – brain barrier permeability, Comput. Biol. Chem. 89 (2020), pp. 107377. doi:10.1016/j.compbiolchem.2020.107377.
  • I.F. Martins, A.L. Teixeira, L. Pinheiro, and A.O. Falcao, A Bayesian approach to in silico blood-brain barrier penetration modeling, J. Chem. Inf. Model. 52 (2012), pp. 1686–1697. doi:10.1021/ci300124c.
  • Z. Gao, Y. Chen, X. Cai, R. Xu, and C. Sahinalp, Predict drug permeability to blood-brain-barrier from clinical phenotypes: Drug side effects and drug indications, Bioinformatics 33 (2017), pp. 901–908. doi:10.1093/bioinformatics/btw713.
  • M. Adenot and R. Lahana, Blood-brain barrier permeation models: Discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 239–248. doi:10.1021/ci034205d.
  • F. Plisson and A.M. Piggott, Predicting blood–brain barrier permeability of marine-derived kinase inhibitors using ensemble classifiers reveals potential hits for neurodegenerative disorders, Mar. Drugs 17 (2019), pp. 81. doi:10.3390/md17020081.
  • M. Singh, R. Divakaran, L.S.K. Konda, and R. Kristam, A classification model for blood brain barrier penetration, J. Mol. Graph. Model. 96 (2020), pp. 107516. doi:10.1016/j.jmgm.2019.107516.
  • Z. Wang, H. Yang, Z. Wu, T. Wang, W. Li, Y. Tang, and G. Liu, In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods, ChemMedChem 13 (2018), pp. 2189–2201. doi:10.1002/cmdc.201800533.
  • Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, K. Leswing, and V. Pande, MoleculeNet: A benchmark for molecular machine learning, Chem. Sci. 9 (2018), pp. 513–530. doi:10.1039/C7SC02664A.
  • Y. Yuan, F. Zheng, and C.G. Zhan, Improved prediction of blood–brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints, AAPS J. 20 (2018), pp. 54. doi:10.1208/s12248-018-0215-8.
  • B. Shaker, M.S. Yu, J.S. Song, S. Ahn, J.Y. Ryu, K.S. Oh, and D. Na, LightBBB: Computational prediction model of blood-brain-barrier penetration based on LightGBM, Bioinformatics 37 (2021), pp. 1135–1139. doi:10.1093/bioinformatics/btaa918.
  • F. Broccatelli, C.A. Larregieu, G. Cruciani, T.I. Oprea, and L.Z. Benet, Improving the prediction of the brain disposition for orally administered drugs using BDDCS, Adv. Drug Deliv. Rev. 64 (2012), pp. 95–109. doi:10.1016/j.addr.2011.12.008.
  • F. Meng, Y. Xi, J. Huang, and P.W. Ayers, A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors, Blood-Brain Barrier Database (B3DB), 2021; software available at https://doi.org/10.6084/m9.figshare.15634230.v3.
  • V. Rattan, R. Mittal, J. Singh, and V. Malik, Analyzing the application of SMOTE on machine learning classifiers, in 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2021, pp. 692–695.
  • P. Banerjee, F.O. Dehnbostel, and R. Preer, Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets, Front. Chem. 6 (2018), pp. 1–11. doi:10.3389/fchem.2018.00362.
  • V. Chandrasekar, M.Y. Ansari, A.V. Singh, S. Uddin, K.S. Prabhu, S. Dash, S. Al Khodor, A. Terranegra, M. Avella, and S.P. Dakua, Investigating the use of machine learning models to understand the drugs permeability across placenta, IEEE Access 11 (2023), pp. 52726–52739. doi:10.1109/ACCESS.2023.3272987.
  • D. Dablain, B. Krawczyk, and N.V. Chawla, DeepSMOTE: Fusing deep learning and SMOTE for imbalanced data, in IEEE Transactions on Neural Networks and Learning Systems, Padua, Italy, 2022, pp. 1–15.
  • A. Ramezankhani, O. Pournik, J. Shahrabi, F. Azizi, F. Hadaegh, and D. Khalili, The impact of oversampling with SMOTE on the performance of 3 classifiers in prediction of type 2 diabetes, Med. Decis. Mak. 36 (2016), pp. 137–144. doi:10.1177/0272989X14560647.
  • V. Kumar, S. Patiyal, A. Dhall, N. Sharma, and G.P.S. Raghava, B3pred: A random-forest-based method for predicting and designing blood–brain barrier penetrating peptides, Pharmaceutics 13 (2021), pp. 1237. doi:10.3390/pharmaceutics13081237.
  • D. Roy, V.K. Hinge, and A. Kovalenko, To pass or not to pass: Predicting the blood-brain barrier permeability with the 3D-RISM-KH molecular solvation theory, ACS Omega 4 (2019), pp. 16774–16780. doi:10.1021/acsomega.9b01512.
  • Z. Shi, Y. Chu, Y. Zhang, Y. Wang, and D.Q. Wei, Prediction of blood-brain barrier permeability of compounds by fusing resampling strategies and extreme gradient boosting, IEEE Access 9 (2021), pp. 9557–9566. doi:10.1109/ACCESS.2020.3047852.
  • V.A. Dev and M.R. Eden, Formation lithology classification using scalable gradient boosted decision trees, Comput. Chem. Eng. 128 (2019), pp. 392–404. doi:10.1016/j.compchemeng.2019.06.001.
  • S. Touzani, J. Granderson, and S. Fernandes, Gradient boosting machine for modeling the energy consumption of commercial buildings, Energy Build. 158 (2018), pp. 1533–1543. doi:10.1016/j.enbuild.2017.11.039.
  • L. Liu, L. Zhang, H. Feng, S. Li, M. Liu, J. Zhao, and H. Liu, Prediction of the blood-brain barrier (BBB) permeability of chemicals based on machine-learning and ensemble methods, Chem. Res. Toxicol. 34 (2021), pp. 1456–1467. doi:10.1021/acs.chemrestox.0c00343.
  • T.H. Yu, B.H. Su, L.C. Battalora, S. Liu, and Y.J. Tseng, Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power, Brief. Bioinf. 23 (2022), pp. 1–13. doi:10.1093/bib/bbab377.
  • M. Hossin and M. Sulaiman, A review on evaluation metrics for data classification evaluations, Int. J. Data Min. Knowl. Manag. Process 5 (2015), pp. 01–11. doi:10.5121/ijdkp.2015.5201.
  • J.N. Mandrekar, Receiver operating characteristic curve in diagnostic test assessment, J. Thorac. Oncol. 5 (2010), pp. 1315–1316. doi:10.1097/JTO.0b013e3181ec173d.
  • M.M. Aspar, R. Edros, and N.A. Hamzah, Antibacterial evaluation of Malaysian kelulut, tualang and acacia honey against wound infecting bacteria, in IOP Conference Series: Materials Science and Engineering 991, Kuala Lumpur, Malaysia, 2020, pp. 012065.
  • M.A. Mohd, R. Edros, and N.A. Hamzah, Antibacterial properties of Kelulut, Tualang and Acacia honey against fourteen clinically-isolated strains of bacteria-infecting wound, in AIP Conference Proceedings, 2252, Poznan, Poland, 2020, pp. 020001.
  • M.A. Prats-Sedano, G. Savulich, A. Surendranathan, P.C. Donaghy, A.J. Thomas, J.B. Rowe, L. Su, and J.T. O’Brien, The revised addenbrooke’s cognitive examination can facilitate differentiation of dementia with Lewy bodies from Alzheimer’s disease, Int. J. Geriatr. Psychiatry 36 (2021), pp. 831–838. doi:10.1002/gps.5483.
  • F. Sessa and M. Rahm, Electronegativity equilibration, J. Phys. Chem. A 126 (2022), pp. 5472–5482. doi:10.1021/acs.jpca.2c03814.
  • S. Racioppi and M. Rahm, In-situ electronegativity and the bridging of chemical bonding concepts, Chem. Eur. J. 27 (2021), pp. 18156–18167. doi:10.1002/chem.202103477.
  • A.V. Singh, M. Varma, P. Laux, S. Choudhary, A.K. Datusalia, N. Gupta, A. Luch, A. Gandhi, P. Kulkarni, and B. Nath, Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: A comprehensive review, Arch. Toxicol. 97 (2023), pp. 963–979. doi:10.1007/s00204-023-03471-x.
  • V. Shalgunov, S. Lopes van den Broek, I. Vang Andersen, R. García Vázquez, N.R. Raval, M. Palner, Y. Mori, G. Schäfer, B. Herrmann, H. Mikula, N. Beschorner, M. Nedergaard, S. Syvänen, M. Barz, G. Moos Knudsen, U.M. Battisti, and M.M. Herth, Pretargeted imaging beyond the blood-brain barrier, RSC Med. Chem. 14 (2022), pp. 444–453. doi:10.1039/D2MD00360K.
  • R. Laczkó-Rigó, R. Jójárt, E. Mernyák, É. Bakos, A. Tuerkova, B. Zdrazil, and C. Özvegy-Laczka, Structural dissection of 13-epiestrones based on the interaction with human organic anion-transporting polypeptide, OATP2B1, J. Steroid Biochem. Mol. Biol. 200 (2020), pp. 105652. doi:10.1016/j.jsbmb.2020.105652.
  • A.Z. Summers, J.B. Gilmer, C.R. Iacovella, P.T. Cummings, and C. Mccabe, MoSDeF, a Python framework enabling large-scale computational screening of soft matter: Application to chemistry-property relationships in lubricating monolayer films, J. Chem. Theory Comput. 16 (2020), pp. 1779–1793. doi:10.1021/acs.jctc.9b01183.
  • R. Hamed, A.D. Eyal, E. Berman, and S. Eyal, In silico screening for clinical efficacy of antiseizure medications: Not all central nervous system drugs are alike, Epilepsia 64 (2023), pp. 311–319. doi:10.1111/epi.17479.
  • A. El Aissouq, H. Toufik, F. Lamchouri, M. Stitou, and A. Ouammou, QSAR study of isonicotinamides derivatives as Alzheimr’s disease inhibitors using PLS-R and ANN methods, in Proceedings - 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), Taza, Morocco, 2019, pp. 1–7.
  • T. Constantinescu, C.N. Lungu, and I. Lung, Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives, Molecules 24 (2019), pp. 1–11. doi:10.3390/molecules24081505.
  • O.A. Joseph, K. Babatomiwa, A. Niyi, O. Olaposi, I. Olumide, D. Development, A. Akoko, A. Akoko, D. Res, O.A. Joseph, D. Development, A. Akoko, and O. State, Molecular docking and 3d qsar studies of c000000956 as a potent inhibitor of bace-1 * preparation of protein structure molecules, Drug Res. (Stuttg) 69 (2019), pp. 451–457. doi:10.1055/a-0849-9377.
  • J. Williams, V. Siramshetty, Ð.-T. Nguyễn, E.C. Padilha, M. Kabir, K.-R. Yu, A.Q. Wang, T. Zhao, M. Itkin, P. Shinn, E.A. Mathé, X. Xu, and P. Shah, Using in vitro ADME data for lead compound selection: An emphasis on PAMPA ph 5 permeability and oral bioavailability, Bioorg. Med. Chem. 56 (2022), pp. 116588. doi:10.1016/j.bmc.2021.116588.
  • M. Awale, R. Van Deursen, and J.L. Reymond, MQN-mapplet: Visualization of chemical space with interactive maps of DrugBank, ChEMBL, PubChem, GDB-11, and GDB-13, J. Chem. Inf. Model 53 (2013), pp. 509–518. doi:10.1021/ci300513m.
  • M. Medic-Saric, S. Rendic, V. Vestemar, and S. Saric, A comparative study of some topological indices and log P in structure-property-activity analysis of phenylalkylamines, Acta Pharm. 43 (1993), pp. 15–26.
  • P.L.A. Popelier, Quantum chemical topology, Struct. Bond. 170 (2016), pp. 71–118.
  • P. Bleiziffer, K. Schaller, and S. Riniker, Machine learning of partial charges derived from high-quality quantum-mechanical calculations, J. Chem. Inf. Model. 58 (2018), pp. 579–590. doi:10.1021/acs.jcim.7b00663.
  • I. Loryan, V. Sinha, C. Mackie, A. Van Peer, W.H. Drinkenburg, A. Vermeulen, D. Heald, M. Hammarlund-Udenaes, and C.M. Wassvik, Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates, Mol. Pharm. 12 (2015), pp. 520–532.
  • C. Wang, X. Man, and L. Ou, Molecular dynamics study of the effect of temperature on the flotation behavior of sodium oleate on the surface of diaspore, Miner. Eng. 192 (2023), pp. 108004. doi:10.1016/j.mineng.2023.108004.
  • N. Qin, X. Lu, Y. Liu, Y. Qiao, W. Qu, F. Feng, and H. Sun, Recent research progress of Uncaria spp. based on alkaloids: Phytochemistry, pharmacology and structural chemistry, Eur. J. Med. Chem. 210 (2021), pp. 112960. doi:10.1016/j.ejmech.2020.112960.
  • M.E. Heitzman, C.C. Neto, E. Winiarz, A.J. Vaisberg, and G.B. Hammond, Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae), Phytochemistry 66 (2005), pp. 5–29.
  • D. Martins and C.V. Nunez, Secondary metabolites from Rubiaceae species, Molecules 20 (2015), pp. 13422–13495. doi:10.3390/molecules200713422.
  • H.J. Barrales-Cureño, Pharmacological applications and in vitro biotechnological production of anticancer alkaloids of Catharanthus roseus TT - Aplicaciones farmacológicas y producción biotecnológica in vitro de los alcaloides anticancerígenos de Catharanthus roseus, Biotecnol. Apl. 32 (2015), pp. 1101–1110.
  • C. Huang, X. Xia, J. He, Y. Liu, Z. Shao, T. Hu, C. Yu, X. Liu, Q. Xu, B. Liu, N. Liu, Y. Liao, and H. Huang, ERα is a target for butein-induced growth suppression in breast cancer, Am. J. Cancer Res. 10 (2020), pp. 3721–3736.
  • M. Taher, M.S. Amri, D. Susanti, M.B. Abdul Kudos, N.F.A. Md Nor, and Y. Syukri, Medicinal uses, phytochemistry, and pharmacological properties of Piper aduncum L, Sains Malaysiana 49 (2020), pp. 1829–1851. doi:10.17576/jsm-2020-4908-07.
  • X. Li, B. Chen, H. Xie, Y. He, D. Zhong, and D. Chen, Antioxidant structure–activity relationship analysis of five dihydrochalcones, Molecules 23 (2018), pp. 1–13.
  • M. Rudrapal, J. Khan, A.A. Bin Dukhyil, R.M.I.I. Alarousy, E.I. Attah, T. Sharma, S.J. Khairnar, and A.R. Bendale, Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics, Molecules 26 (2021), pp. 1–21. doi:10.3390/molecules26237177.
  • R.S.L. Taylor and G.H.N. Towers, Antibacterial constituents of the Nepalese medicinal herb, Centipeda minima, Phytochemistry 47 (1998), pp. 631–634. doi:10.1016/S0031-9422(97)00534-7.
  • Y.J. Wang, X.Y. Wang, X.Y. Hao, Y.M. Yan, M. Hong, S.F. Wei, Y.L. Zhou, Q. Wang, Y.X. Cheng, and Y.Q. Liu, Ethanol extract of Centipeda minima exerts antioxidant and neuroprotective effects via activation of the Nrf2 signaling pathway, Oxid. Med. Cell. Longev. 2019 (2019), pp. 9421037. doi:10.1155/2019/9421037.
  • R. Zhang, Q. Guo, E.J. Kennelly, C. Long, and X. Chai, Diverse alkaloids and biological activities of Fumaria (Papaveraceae): An ethnomedicinal group, Fitoterapia 146 (2020), pp. 104697. doi:10.1016/j.fitote.2020.104697.
  • C. Shepherd, P. Giacomin, S. Navarro, C. Miller, A. Loukas, and P. Wangchuk, A medicinal plant compound, capnoidine, prevents the onset of inflammation in a mouse model of colitis, J. Ethnopharmacol. 211 (2018), pp. 17–28. doi:10.1016/j.jep.2017.09.024.
  • R. Ahmad and F. Salim, Oxindole Alkaloids of Uncaria (Rubiaceae, Subfamily Cinchonoideae): A Review on Its Structure, Properties, and Bioactivities, Vol. 45, Elsevier, Amsterdam, The Netherlands, 2015.
  • D. Yan, Z. Ma, C. Liu, C. Wang, Y. Deng, W. Liu, and B. Xu, Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells, Food Chem. Toxicol. 124 (2019), pp. 336–348. doi:10.1016/j.fct.2018.12.027.
  • X. Hou, J.O. Watzlawik, F.C. Fiesel, and W. Springer, Autophagy in Parkinson’s disease, J. Mol. Biol. 432 (2020), pp. 2651–2672. doi:10.1002/bab.2194.
  • M.Z. Yan, Q. Chang, Y. Zhong, B.X. Xiao, L. Feng, F.R. Cao, R. Le Pan, Z.S. Zhang, Y.H. Liao, and X.M. Liu, Lotus Leaf alkaloid extract displays sedative-hypnotic and anxiolytic effects through GABAA receptor, J. Agric. Food Chem. 63 (2015), pp. 9277–9285. doi:10.1021/acs.jafc.5b04141.
  • R. HarishKumar and C.I. Selvaraj, Nuciferine from Nelumbo nucifera Gaertn. Attenuates isoproterenol-induced myocardial infarction in Wistar rats, Biotechnol. Appl. Biochem. 69 (2022), pp. 1176–1189.
  • L.H. Ye, X.X. He, C. You, X. Tao, L.S. Wang, M. Di Zhang, Y.F. Zhou, and Q. Chang, Pharmacokinetics of nuciferine and N-nornuciferine, two major alkaloids from Nelumbo nucifera leaves, in rat plasma and the brain, Front. Pharmacol. 9 (2018), pp. 1–7. doi:10.3389/fphar.2018.00902.
  • X. Ma, F.J. Mandausch, V. Sahoo, L. Popovic, M. Hostiuc, J.P. Wintgens, J. Qiu, N. Kannaiyan, M.J. Rossner, M.C. Wehr, B. Ndikubwimana, and F. Ngendahimana, Hepatic metabolomics combined with network pharmacology approach to reveal the correlation of anti-depression effect and nourishing blood effect of Angelicae sinensis Radix, J. Emerg. Technol. Innov. Res. 24 (2021), pp. 5–7.
  • Q. Xie, L. Zhang, L. Xie, Y. Zheng, K. Liu, H. Tang, Y. Liao, and X. Li, Z-ligustilide: A review of its pharmacokinetics and pharmacology, Phyther. Res. 34 (2020), pp. 1966–1991. doi:10.1002/ptr.6662.
  • V. Bunel, M.-H. Antoine, J. Nortier, P. Duez, and C. Stévigny, Nephroprotective effects of ferulic acid, Z-ligustilide and E-ligustilide isolated from Angelica sinensis against cisplatin toxicity in vitro, Toxicol. Vitro 29 (2015), pp. 458–467. doi:10.1016/j.tiv.2014.12.017.
  • C. Wang, J. Wan, Z. Mei, and X. Yang, Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance, Pharmacogn. Mag. 10 (2014), pp. 73–76. doi:10.4103/0973-1296.126669.
  • M. Mirghani, W. J Osman, E.A.E. Garelnabi, M.S. Mohammed, and O.H.A. Ali, Pulicaria crispa (Forssk) Oliv: A review of ethnopharmacology, phytochemistry and biological activities, Khartoum J. Pharm. Sci. 1 (2020), pp. 13–25.
  • S. Kebbi, M.L. Ciavatta, A.M. Mahmoud, M. Carbone, A. Ligresti, R. Seghiri, and M. Gavagnin, Sesquiterpene lactones with the 12,8-guaianolide skeleton from Algerian Centaurea omphalotricha, Biomolecules 11 (2021), pp. 1–10. doi:10.3390/biom11071053.
  • U.K. Karmakar, N. Ishikawa, K. Toume, M.A. Arai, S.K. Sadhu, F. Ahmed, and M. Ishibashi, Sesquiterpenes with TRAIL-resistance overcoming activity from Xanthium strumarium, Bioorg. Med. Chem. 23 (2015), pp. 4746–4754. doi:10.1016/j.bmc.2015.05.044.
  • K. Chester, S. Zahiruddin, A. Ahmad, W. Khan, S. Paliwal, and S. Ahmad, Bioautography-based identification of antioxidant metabolites of Solanum nigrum l. and exploration its hepatoprotective potential agchester, Pharmacogn. Mag. 13 (Suppl 2017), pp. 179–188.
  • P. Zeng, X.M. Wang, C.Y. Ye, H.F. Su, and Q. Tian, The main alkaloids in Uncaria rhynchophylla and their anti-Alzheimer’s disease mechanism determined by a network pharmacology approach, Int. J. Mol. Sci. 22 (2021), pp. 3612. doi:10.3390/ijms22073612.
  • L. Chen, Y. Huang, X. Yu, J. Lu, W. Jia, J. Song, L. Liu, Y. Wang, Y. Huang, J. Xie, and M. Li, Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease, Front. Pharmacol. 12 (2021), pp. 1–11.
  • V. Coca-Ruíz, I. Suárez, J. Aleu, and I.G. Collado, Structures, occurrences and biosynthesis of 11,12,13-tri-nor-sesquiterpenes, an intriguing class of bioactive metabolites, Plants 11 (2022), pp. 769. doi:10.3390/plants11060769.
  • T. Mihajilov-Krstev, B. Jovanović, B. Zlatković, J. Matejić, J. Vitorović, V. Cvetković, B. Ilić, L. Đorđević, N. Joković, D. Miladinović, T. Jakšić, N. Stanković, V.S. Jovanović, and N. Bernstein, Phytochemistry, toxicology and therapeutic value of Petasites hybridus subsp. Ochroleucus (common butterbur) from the Balkans, Plants 9 (2020), pp. 700. doi:10.3390/plants9060700.
  • L. Zhang, Z. Hong, R. Rong Zhang, X. Zhen Sun, Y. Fang Yuan, J. Hu, and X. Wang, Bakkenolide A inhibits leukemia by regulation of HDAC3 and PI3K/Akt-related signaling pathways, Biomed. Pharmacother. 83 (2016), pp. 958–966. doi:10.1016/j.biopha.2016.07.049.
  • M. Kerboua, M.A. Ahmed, N. Samba, R. Aitfella-Lahlou, L. Silva, J.F. Boyero, C. Raposo, and J.M.L. Rodilla, Phytochemical investigation of new Algerian lichen species: Physcia mediterranea nimis, Molecules 26 (2021), pp. 1–20. doi:10.3390/molecules26041121.
  • I. Rahayu and K.H. Timotius, Phytochemical analysis, antimutagenic and antiviral activity of Moringa oleifera L. leaf infusion: In vitro and in silico studies, Molecules 27 (2022), pp. 4017. doi:10.3390/molecules27134017.
  • M.D. Firdaus, N. Artanti, M. Hanafi, and Rosmalena, Phytochemical constituents, and in vitro antidiabetic and antioxidant properties of various extracts of kenikir (Cosmos caudatus) leaves, Pharmacogn. J. 13 (2021), pp. 890–895. doi:10.5530/pj.2021.13.114.
  • M. Westermann, A.G. Adomako-Bonsu, S. Thiele, S.S. Çiçek, H.J. Martin, and E. Maser, Inhibition of human carbonyl reducing enzymes by plant anthrone and anthraquinone derivatives, Chem. Biol. Interact. 354 (2022), pp. 109823. doi:10.1016/j.cbi.2022.109823.
  • X. Zhang, X. Yang, Z. Cao, Z. Zhao, and Y. Zhang, Isoxanthohumol exerts anticancer activity against drug-resistant thyroid cancer cells by inhibiting cell migration and invasion, apoptosis induction and targeting PI3K/AKT/m-TOR signaling pathway, Trop. J. Pharm. Res. 20 (2021), pp. 1151–1157. doi:10.4314/tjpr.v20i6.8.
  • T. Krajnović, N. N. Pantelić, K. Wolf, T. Eichhorn, D. Maksimović-Ivanić, S. Mijatović, L.A. Wessjohann, and G.N. Kaluđerović, Anticancer potential of xanthohumol and isoxanthohumol loaded into SBA- mesoporous silica particles against B16F10 melanoma cells, Materials (Basel) 15 (2022), pp. 5028.
  • M.C. Cheng, T.H. Lee, Y.T. Chu, L.L. Syu, S.J. Hsu, C.H. Cheng, J. Wu, and C.K. Lee, Melanogenesis inhibitors from the rhizoma of Ligusticum sinense in B16-f10 melanoma cells in vitro and zebrafish in vivo, Int. J. Mol. Sci. 19 (2018), pp. 1–17. doi:10.3390/ijms19123994.
  • R.N. De Almeida, M. De Fátima Agra, F.N.S. Maior, and D.P. De Sousa, Essential oils and their constituents: Anticonvulsant activity, Molecules 16 (2011), pp. 2726–2742. doi:10.3390/molecules16032726.
  • I.A.P. Jourjine, L. Zeisel, J. Krauß, and F. Bracher, Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone, Beilstein J. Org. Chem. 17 (2021), pp. 2668–2679. doi:10.3762/bjoc.17.181.
  • X. Zhang, J.K. Xu, J. Wang, N.L. Wang, H. Kurihara, S. Kitanaka, and X.S. Yao, Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile, J. Nat. Prod. 70 (2007), pp. 24–28. doi:10.1021/np060449r.
  • W.J. Geldenhuys, A.S. Mohammad, C.E. Adkins, and P.R. Lockman, Molecular determinants of blood–brain barrier permeation, Ther. Deliv. 6 (2015), pp. 961–971. doi:10.4155/tde.15.32.
  • Z. Wu, Z. Xian, W. Ma, Q. Liu, X. Huang, B. Xiong, S. He, and W. Zhang, Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method, Comput. Meth. Prog. Biomed. 200 (2021), pp. 105943. doi:10.1016/j.cmpb.2021.105943.
  • A.S. Guntner, T. Bögl, F. Mlynek, and W. Buchberger, Large-scale evaluation of collision cross sections to investigate blood-brain barrier permeation of drugs, Pharmaceutics 13 (2021), pp. 2141. doi:10.3390/pharmaceutics13122141.
  • D.J. Begley, ABC transporters and the blood-brain barrier, Curr. Pharm. Des. 10 (2004), pp. 1295–1312. doi:10.2174/1381612043384844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.