125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and experimental validation of the oxazole and thiazole derivatives as potential antivirals against of human cytomegalovirus

, , , , , , , , & show all
Pages 523-541 | Received 29 Apr 2023, Accepted 29 Jun 2023, Published online: 10 Jul 2023

References

  • P. Griffiths and M. Reeves, Pathogenesis of human cytomegalovirus in the immunocompromised host, Nat. Rev. Microbiol. 19 (2021), pp. 759–773. doi:10.1038/s41579-021-00582-z.
  • M. Zuhair, G.S.A. Smit, G. Wallis, F. Jabbar, C. Smith, B. Devleesschauwer, and P. Griffiths, Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis, Rev. Med. Virol. 29 (2019), pp. e2034. doi:10.1002/rmv.2034.
  • G. Andrei, E. De Clercq, and R. Snoeck, Drug targets in cytomegalovirus infection, Infect. Disord. Drug Targets. 9 (2009), pp. 201–222. doi:10.2174/187152609787847758.
  • K. Zarrouk, J. Piret, and G. Boivin, Herpesvirus DNA polymerases: Structures, functions and inhibitors, Virus Res. 234 (2017), pp. 177–192. doi:10.1016/j.virusres.2017.01.019.
  • R. Hall Sedlak, J. Castor, S.M. Butler-Wu, E. Chan, L. Cook, A.P. Limaye, and K.R. Jerome, Rapid detection of human cytomegalovirus UL97 and UL54 mutations directly from patient samples, J. Clin. Microbiol. 51 (2013), pp. 2354–2359. doi:10.1128/JCM.00611-13.
  • K.R. Park, Y.E. Kim, A. Shamim, S. Gong, S.H. Choi, K.K. Kim, Y.J. Kim, and J.H. Ahn, Analysis of novel drug-resistant human cytomegalovirus DNA polymerase mutations reveals the role of a DNA-binding loop in phosphonoformic acid resistance, Front. Microbiol. 13 (2022), pp. 771978. doi:10.3389/fmicb.2022.771978.
  • E. Hofmann, D. Sidler, S. Dahdal, P. Bittel, F. Suter-Riniker, O. Manuel, L.N. Walti, and C. Hirzel, Emergence of letermovir resistance in solid organ transplant recipients with ganciclovir resistant cytomegalovirus infection: A case series and review of the literature, Transpl. Infect. Dis. 23 (2021), pp. e13515. doi:10.1111/tid.13515.
  • H. Zakaryan, E. Arabyan, A. Oo, and K. Zandi, Flavonoids: Promising natural compounds against viral infections, Arch. Virol. 162 (2017), pp. 2539–2551. doi:10.1007/s00705-017-3417-y.
  • M.J.-A. Martinez, L.M.B.D. Olmo, and P.B. Benito, Antiviral activities of polysaccharides from natural sources, Stud. Nat. Prod. Chem. 30 (2005), pp. 393–418. doi:10.1016/S1572-5995(05)80038-9.
  • H. Sabit, A. Dahan, J. Sun, C.J. Provoda, K.D. Lee, J.H. Hilfinger, and G.L. Amidon, Cytomegalovirus protease targeted prodrug development, Mol. Pharm. 10 (2013), pp. 1417–1424. doi:10.1021/mp3007067.
  • V. Kovalishyn, V. Zyabrev, M. Kachaeva, K. Ziabrev, K. Keith, E. Harden, C. Hartline, S.H. James, and V. Brovarets, Design of new imidazole derivatives with anti-HCMV activity: QSAR modeling, synthesis and biological testing, J. Comput. Aided Mol. Des. 35 (2021), pp. 1177–1187. doi:10.1007/s10822-021-00428-z.
  • L.O. Metelytsia, M.M. Trush, V.V. Kovalishyn, D.M. Hodyna, M.V. Kachaeva, V.S. Brovarets, S.G. Pilyo, V.V. Sukhoveev, S.A. Tsyhankov, V.M. Blagodatnyi, and I.V. Semenyuta, 1,3-Oxazole derivatives of cytisine as potential inhibitors of glutathione reductase of Candida spp.: QSAR modeling, docking analysis and experimental study of new anti-Candida agents, Comput. Biol. Chem. 90 (2021), pp. 107407. doi:10.1016/j.compbiolchem.2020.107407.
  • I. Semenyuta, V. Kovalishyn, V. Tanchuk, S. Pilyo, V. Zyabrev, V. Blagodatnyy, O. Trokhimenko, V. Brovarets, and L. Metelytsia, 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study, Comput. Biol. Chem. 65 (2016), pp. 8–15. doi:10.1016/j.compbiolchem.2016.09.012.
  • C.C. Eze, A.M. Ezeokonkwo, I.D. Ugwu, U.F. Eze, E.L. Onyeyilim, I.S. Attah, and I.V. Okonkwo, Azole-pyrimidine hybrid anticancer agents: A review of molecular structure, structure activity relationship, and molecular docking, Anticancer Agents Med. Chem. 22 (2022), pp. 2822–2851. doi:10.2174/1871520622666220318090147.
  • J.C. Madden, S.J. Enoch, A. Paini, and M.T.D. Cronin, A review of in silico tools as alternatives to animal testing: Principles, resources and applications, Altern. Lab. Anim. 48 (2020), pp. 146–172. doi:10.1177/0261192920965977.
  • ChEMBL, Available at https://www.ebi.ac.uk/chembl/. (accessed 10 May 2022).
  • I. Sushko, S. Novotarskyi, R. Körner, A.K. Pandey, M. Rupp, W. Teetz, S. Brandmaier, A. Abdelaziz, V.V. Prokopenko, V.Y. Tanchuk, R. Todeschini, A. Varnek, G. Marcou, P. Ertl, V. Potemkin, M. Grishina, J. Gasteiger, C. Schwab, I.I. Baskin, V.A. Palyulin, E.V. Radchenko, W.J. Welsh, V. Kholodovych, D. Chekmarev, A. Cherkasov, J. Aires-de-Sousa, Q.Y. Zhang, A. Bender, F. Nigsch, L. Patiny, A. Williams, V. Tkachenko, and I.V. Tetko, Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information, J. Comput. Aided Mol. Des. 25 (2011), pp. 533–554. doi:10.1007/s10822-011-9440-2.
  • I.V. Tetko, Associative neural network, Meth. Mol. Biol. 458 (2008), pp. 185–202. doi:10.1007/978-1-60327-101-1_10.
  • L. Breiman, Random forests, Mach. Learn. 45 (2001), pp. 5–32. doi:10.1023/A:1010933404324.
  • A.V. Zakharov, T. Zhao, D.T. Nguyen, T. Peryea, T. Sheils, A. Yasgar, R. Huang, N. Southall, and A. Simeonov, Novel consensus architecture to improve performance of large-scale multitask deep learning QSAR models, J. Chem. Inf. Model. 59 (2019), pp. 4613–4624. doi:10.1021/acs.jcim.
  • J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Statist. 29 (2001), pp. 1189–1232. doi:10.1214/aos/1013203451.
  • L.H. Hall and L.B. Kier, Electrotopological state indexes for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 1039–1045. doi:10.1021/ci00028a014.
  • I.V. Tetko and V.Y. Tanchuk, Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 1136–1145. doi:10.1021/ci025515j.
  • E.L. Willighagen, J.W. Mayfield, J. Alvarsson, A. Berg, L. Carlsson, N. Jeliazkova, S. Kuhn, T. Pluskal, M. Rojas-Chertó, O. Spjuth, G. Torrance, C.T. Evelo, R. Guha, and C. Steinbeck, The chemistry development kit (CDK) v2.0: Atom typing, depiction, molecular formulas, and substructure searching, J. Cheminform. 9 (2017), pp. 33. doi:10.1186/s13321-017-0220-4.
  • H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. Perkins, and W. Tong, Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics, J. Chem. Inf. Model. 48 (2008), pp. 1337–1344. doi:10.1021/ci800038f.
  • V.E. Kuz’min, A.G. Artemenko, P.G. Polischuk, E.N. Muratov, A.I. Hromov, A.V. Liahovskiy, S.A. Andronati, and S.Y. Makan, Hierarchic system of QSAR models (1D-4D) on the base of simplex representation of molecular structure, J. Mol. Model. 11 (2005), pp. 457–467. doi:10.1007/s00894-005-0237-x.
  • A. Cherkasov, Inductive descriptors: 10 successful years in QSAR, Curr. Comput. Aided Drug. Des. 1 (2005), pp. 21–42. doi:10.2174/1573409052952288.
  • FDA, Available at https://www.fda.gov/science-research/bioinformatics-tools/mold2. (accessed 25 February 2021).
  • V.E. Kuz’min, A.G. Artemenko, and E.N. Muratov, Hierarchical QSAR technology based on the simplex representation of molecular structure, J. Comput. Aided Mol. Des. 22 (2008), pp. 403–421. doi:10.1007/s10822-008-9179-6.
  • V. Kuz’min, A. Artemenko, L. Ognichenko, A. Hromov, A. Kosinskaya, S. Stelmakh, Z.L. Sessions, and E.N. Muratov, Simplex representation of molecular structure as universal QSAR/QSPR tool, Struct. Chem. 32 (2021), pp. 1365–1392. doi:10.1007/s11224-021-01793-z.
  • OCHEM docs, Available at https://docs.ochem.eu/display/MAN.html. (accessed 15 October 2022).
  • D.C. Whitley, M.G. Ford, and D.J. Livingstone, Unsupervised forward selection: A method for eliminating redundant variables, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 1160–1168. doi:10.1021/ci000384c.
  • I.V. Tetko, I. Sushko, A.K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oberg, R. Todeschini, D. Fourches, and A. Varnek, Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection, J. Chem. Inf. Model. 48 (2008), pp. 1733–1746. doi:10.1021/ci800151m.
  • I. Sushko, S. Novotarskyi, R. Körner, A.K. Pandey, V.V. Kovalishyn, V.V. Prokopenko, and I.V. Tetko, Applicability domain for in silico models to achieve accuracy of experimental measurements, J. Chemom. 24 (2010), pp. 202–208. doi:10.1002/cem.1296.
  • S.B. Babii, V.S. Zyabrev, and B.S. Drach, Conversion of n-(1-arylsulfonyl-2,2-dichloroethenyl)carboxamides into derivatives of 4,5-dimercapto-oxazole, Russ. J. Org. Chem. 37 (2001), pp. 1149–1152. doi:10.1023/A:1013196415680.
  • B.S. Drach, E.P. Sviridov, and T.Y. Lavrenyk, Reaction of α-acylamino-β,β-dichloroacrylonitriles with primary amines, J. Org. Chem. USSR: transl. from Russian 10 (1974), pp. 278–1280.
  • A.N. Kornienko, S.G. Pil’o, V.M. Prokopenko, and V.S. Brovarets, Amidophenacylating reagents in synthesis of new derivatives of 1,3-oxazole and 1,3-thiazole-4-sulfonyl chlorides and corresponding sulfonamides, Russ. J. Gen. Chem. 84 (2014), pp. 686–692. doi:10.1134/S1070363214040148.
  • S.B. Babii, V.S. Zyabrev, and B.S. Drach, Cyclocondensation of 1-Tosyl-2,2-dichloroethenyl Isothiocyanate with O-, S-, N-, and C-Nucleophiles, Russ. J. Gen. Chem. 72 (2002), pp. 1730–1735. doi:10.1023/A:1023337112138.
  • RCSB Protein Data Bank, Available at https://www.rcsb.org/structure/2WPO. (accessed 10 November 2022).
  • RCSB Protein Data Bank, Available at https://www.rcsb.org/structure/5IWD. (accessed 10 November 2022).
  • RCSB Protein Data Bank, Available at: https://www.rcsb.org/structure/6EY7. (accessed 10 November 2022).
  • Dassault Systèmes BIOVIA, Discovery studio visualizer, v4.0.100.13345. Available at https://discover.3ds.com.
  • M.F. Sanner, Python: A programming language for software integration and development, J. Mol. Graphics Modell. 17 (1999), pp. 57–61.
  • Marvin Sketch 5.3.735, 2022, ChemAxon. Available at http://www.chemaxon.com.
  • M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform. 4 (2012), pp. 17. doi:10.1186/1758-2946-4-17.
  • T.A. Halgren, MMFF VI. MMFF94s option for energy minimization studies, J. Comput. Chem. 20 (1999), pp. 720–729. doi:10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461. doi:10.1002/jcc.21334.
  • C.B. Hartline, K.A. Keith, J. Eagar, E.A. Harden, T.L. Bowlin, and M.N. Prichard, A standardized approach to the evaluation of antivirals against DNA viruses: Orthopox-, adeno-, and herpesviruses, Antiviral Res. 159 (2018), pp. 104–112. doi:10.1016/j.antiviral.2018.09.015.
  • I. Sushko, E. Salmina, V.A. Potemkin, G. Poda, and I.V. Tetko, ToxAlerts: A web server of structural alerts for toxic chemicals and compounds with potential adverse reactions, J. Chem. Inf. Model. 52 (2012), pp. 2310–2316. doi:10.1021/ci300245q.
  • V. Chervonyi, A.V. Kharchenko, and B.S. Drach, Aryl 1-benzamido-2,2-dichlorovinyl sulfones, Zh. Org. Khim. 24 (1988), pp. 453–454.
  • B.S. Drach, E.P. Sviridov, A.A. Kisilenko, and A.V. Kirsanov, Interaction of secondary amines with N-acyl-2,2-dichlorovinylamines and N-acyl-1-cyano-2,2-dichlorovinylamines, J. Org. Chem. USSR (Engl. Transl.) 9 (1973), pp. 1842–1846.
  • B.S. Drach, A.P. Martynyuk, and G.N. Mis’kevich, Reaction of azlactones of β,β-dichloro-α-(acylamido)acrylic acids with primary and secondary amines, Zh. Org. Khim. 12 (1976), pp. 2238–2244.
  • H. Chen, M. Coseno, S.B. Ficarro, M.S. Mansueto, G. Komazin-Meredith, S. Boissel, D.J. Filman, J.A. Marto, J.M. Hogle, and D.M. Coen, A small covalent allosteric inhibitor of human cytomegalovirus DNA polymerase subunit interactions, ACS Infect. Dis. 3 (2017), pp. 112–118. doi:10.1021/acsinfecdis.6b00079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.