183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel molecular hybrid geometric-harmonic-Zagreb degree based descriptors and their efficacy in QSPR studies of polycyclic aromatic hydrocarbons

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 569-589 | Received 12 Jun 2023, Accepted 16 Jul 2023, Published online: 04 Aug 2023

References

  • H. González-Díaz, S. Vilar, L. Santana, and E. Uriarte, Medicinal chemistry and bioinformatics current trends in drugs discovery with networks topological indices, Curr. Top. Med. Chem. 7 (2007), pp. 1015–1029. doi:10.2174/156802607780906771.
  • D. Maji, G. Ghorai, M.K. Mahmood, and M.A. Alam, On the inverse problem for some topological indices, J. Math. 2021 (2021), pp. 1–8. doi:10.1155/2021/9411696.
  • S. Hosamani, D. Perigidad, S. Jamagoud, Y. Maled, and S. Gavade, QSPR analysis of certain degree based topological indices, J. Stat. Appl. Pro. 6 (2017), pp. 361–371. doi:10.18576/jsap/060211.
  • J. Devillers and A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
  • S. Hayat and M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240 (2014), pp. 213–228.
  • X. Zhang, H.M. Awais, M. Javaid, and M.K. Siddiqui, Multiplicative Zagreb indices of molecular graphs, J. Chem. 2019 (2019), pp. 1–19. doi:10.1155/2019/6720616.
  • M. Arockiaraj, S.R.J. Kavitha, K. Balasubramanian, and J.-B. Liu, On certain topological indices of octahedral and icosahedral networks, IET Control Theory Appl. 12 (2018), pp. 215–220. doi:10.1049/iet-cta.2017.0671.
  • S. Hayat and S. Khan, Quality testing of spectrum-based valency descriptors for polycyclic aromatic hydrocarbons with applications, J. Mol. Struct. 1228 (2021), pp. 129789. doi:10.1016/j.molstruc.2020.129789.
  • I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), pp. 351–361. doi:10.5562/cca2294.
  • M.I. Stankevich, I.V. Stankevich, and N.S. Zefirov, Topological indices in organic chemistry, Russ. Chem. Rev. 57 (1988), pp. 191–208. doi:10.1070/RC1988v057n03ABEH003344.
  • D. Paul, M. Arockiaraj, K. Jacob, and J. Clement, Multiplicative versus scalar multiplicative degree based descriptors in QSAR/QSPR studies and their comparative analysis in entropy measures, Eur. Phys. J. Plus 138 (2023), pp. 323. doi:10.1140/epjp/s13360-023-03920-7.
  • M. Arockiaraj, A.B. Greeni, and A.R.A. Kalaam, Linear versus cubic regression models for analyzing generalized reverse degree based topological indices of certain latest Corona treatment drug molecules, Int. J. Quantum Chem. 123 (2023), pp. e27136. doi:10.1002/qua.27136.
  • K. Balasubramanian, Computational and Artificial Intelligence Techniques for Drug Discovery and Administration, Reference Module in Biomedical Sciences, Elsevier, Amsterdam, 2021.
  • S. Hayat and M. Imran, On degree based topological indices of certain nanotubes, J. Comput. Theor. Nanosci. 12 (2015), pp. 1–7.
  • T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011), pp. 613–626.
  • M. Arockiaraj, S.R.J. Kavitha, K. Balasubramanian, and I. Gutman, Hyper-Wiener and Wiener polarity indices of silicate and oxide frameworks, J. Math. Chem. 56 (2018), pp. 1493–1510. doi:10.1007/s10910-018-0881-x.
  • K. Balasubramanian, Mathematical and computational techniques for drug discovery: Promises and developments, Curr. Top. Med. Chem. 18 (2018), pp. 2774–2799. doi:10.2174/1568026619666190208164005.
  • Z. Wang, K. Li, P. Lambert, and C. Yang, Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products, J. Chromatogr. A 1139 (2007), pp. 14–26. doi:10.1016/j.chroma.2006.10.085.
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs, Polycyclic Aromat. Compd. 40 (2017), pp. 280–303. doi:10.1080/10406638.2017.1411958.
  • B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), pp. 1184–1190. doi:10.1007/s10910-015-0480-z.
  • G.H. Shirdel, H. Rezapour, and A.M. Sayadi, The hyper Zagreb index of graph operations, Iranian J. Math. Chem. 4 (2013), pp. 213–220.
  • G.V. Rajasekharaiah and U.P. Murthy, Hyper-Zagreb indices of graphs and its applications, J. Algebra Comb. Discrete Struct. Appl. 8 (2021), pp. 9.
  • D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end vertex degrees of edges, J. Math. Chem. 46 (2009), pp. 1369–1376. doi:10.1007/s10910-009-9520-x.
  • H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988), pp. 239–257. doi:10.1016/0166-218X(88)90017-0.
  • G.G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, Appl. Math. Let. 15 (2002), pp. 893–895. doi:10.1016/S0893-9659(02)00059-9.
  • E. Deutsch and S. Klavžar, M-polynomial and degree-based topological indices, Iran. J. Math. Chem. 6 (2015), pp. 93–102.
  • M.I. Huilgol, V. Sriram, and K. Balasubramanian, Structure-activity relations for antiepileptic drugs through omega polynomials and topological indices, Mol. Phys. 120 (2022), pp. e1987542.
  • M.I. Huilgol, V. Sriram, H.J. Udupa, and K. Balasubramanian, Computational studies of toxicity and properties of β-diketones through topological indices and M/NM-polynomials, Comput. Theor. Chem. 1224 (2023), pp. 114108. doi:10.1016/j.comptc.2023.114108.
  • M. Ajmal, W. Nazeer, M. Munir, S.M. Kang, and C.Y. Jung, The M-polynomials and topological indices of toroidal polyhex network, Int. J. Math. Anal. 11 (2017), pp. 305–315. doi:10.12988/ijma.2017.7119.
  • F. Afzal, S. Hussain, D. Afzal, and S. Razaq, Some new degree based topological indices via M polynomial, J. Inf. Optim. Sci. 41 (2020), pp. 1061–1076.
  • ChemSpider, http://www.chemspider.com/.
  • NIST Chemistry Webbook, https://webbook.nist.gov/.
  • A. Yovani León, M. Parra, and J.L. Grosso, Estimation of critical properties of typically Colombian vacuum residue Sara fractions, CT&F- Ciencia, Tecnología Y Futuro 3 (2008), pp. 129–142. doi:10.29047/01225383.467.
  • K.S. Pitzer, D.Z. Lippmann, R.F. Curl, C.M. Huggins, and D.E. Petersen, The volumetric and thermodynamic properties of fluids II. Compressibility factor, vapor pressure and entropy of vaporization, J. Am. Chem. Soc. 77 (1955), pp. 3433–3440. doi:10.1021/ja01618a002.
  • R.A. Alberty and A.K. Reif, Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups I. Benzene series, J. Phys. Chem. Ref. Data 17 (1988), pp. 241–253.
  • R.A. Alberty, M.B. Chung, and A.K. Reif, Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups. II. Pyrene series, naphthopyrene series, and coronene series, J. Phys. Chem. Ref. Data 18 (1989), pp. 77–109. doi:10.1063/1.555826.
  • R.A. Alberty, M.B. Chung, and A.K. Reif, Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups. III. Naphthocoronene series, ovalene series, and first members of some higher series, J. Phys. Chem. Ref. Data 19 (1990), pp. 349–370. doi:10.1063/1.555852.
  • C.M. White, Prediction of the boiling point, heat of vaporization, and vapor pressure at various temperatures for polycyclic aromatic hydrocarbons, J. Chem. Eng. Data 31 (1986), pp. 198–203. doi:10.1021/je00044a020.
  • H. Wang and M. Frenklach, Transport properties of polycyclic aromatic hydrocarbons for flame modeling, Combust. Flame 96 (1994), pp. 163–170.
  • M.M. Ferreira, Polycyclic aromatic hydrocarbons: A QSPR study, Chemosphere 44 (2001), pp. 125–146.
  • V.H. Alvarez and M.D. Saldana, Modeling solubility of polycyclic aromatic compounds in subcritical water, Ind. Eng. Chem. Res. 50 (2011), pp. 11396–11405. doi:10.1021/ie201019b.
  • Q. Wang, Q. Jia, and P. Ma, Prediction of the acentric factor of organic compounds with the positional distributive contribution method, J. Chem. Eng. Data 57 (2012), pp. 169–189. doi:10.1021/je200971z.
  • M. Perry and C. White, Correlations of molecular connectivity with critical volume and acentricity, AIChE J. 33 (1987), pp. 146–151. doi:10.1002/aic.690330117.
  • T.C. Allison and D.R. Burgess, First-principles prediction of enthalpies of formation for polycyclic aromatic hydrocarbons and derivatives, J. Phys. Chem. A. 119 (2015), pp. 11329–11365. doi:10.1021/acs.jpca.5b07908.
  • J. Verma, V.M. Khedkar, and E.C. Coutinho, 3D-QSAR in drug design - a review, Curr. Top. Med. Chem. 10 (2010), pp. 95–115. doi:10.2174/156802610790232260.
  • S. Kwon, H. Bae, J. Jo, and S. Yoon, Comprehensive ensemble in QSAR prediction for drug discovery, BMC Bioinf. 20 (2019), pp. 1–12. doi:10.1186/s12859-019-3135-4.
  • A. Jahanbani, S.M. Sheikholeslami, and R. Khoeilar, On the energy of benzenoid hydrocarbons, Polycyclic Aromat. Compd. 42 (2021), pp. 5204–5216. doi:10.1080/10406638.2021.1933103.
  • I. Gutman and S. Klavžar, Bounds for the Schultz molecular topological index of benzenoid systems in terms of the Wiener index, J. Chem. Inf. Comput. Sci. 37 (1997), pp. 741–744. doi:10.1021/ci9700034.
  • B. Lučić, N. Trinajstić, and B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett. 475 (2009), pp. 146–14. doi:10.1016/j.cplett.2009.05.022.
  • R. Kanabur and V. Shigehalli, QSPR analysis of degree-based topological indices with physical properties of benzenoid hydrocarbons, Gen. Lett. Math. 2 (2017), pp. 5–169.
  • Z. Yu, S. Zhou, and T. Tian, Inverse sum indeg reciprocal status index and co-index of graphs, Circuits Syst. Signal Process 42 (2022), pp. 1–21.
  • A.A. Khabyah, S. Zaman, A.N. Koam, A. Ahmad, and A. Ullah, Minimum Zagreb eccentricity indices of two-mode network with applications in boiling point and benzenoid hydrocarbons, Mathematics 10 (2022), pp. 1393. doi:10.3390/math10091393.
  • M.K. Jamil, M. Imran, and K.A. Sattar, Novel face index for benzenoid hydrocarbons, Mathematics 8 (2020), pp. 312. doi:10.3390/math8030312.
  • J.A. Bumpus, Gas-phase heat of formation values for buckminsterfullerene (C60), C70 fullerene (C70), corannulene, coronene, sumanene, and other polycyclic aromatic hydrocarbons calculated using density functional theory (M06 2x) coupled with a versatile inexpensive group-equivalent approach, J. Phys. Chem. A 122 (2018), pp. 6615–6632. doi:10.1021/acs.jpca.8b03321.
  • H.S. Ramane and A.S. Yalnaik, Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons, J. Appl. Math. Comput. 55 (2016), pp. 609–627. doi:10.1007/s12190-016-1052-5.
  • S. Hayat, S. Khan, M. Imran, and J.B. Liu, Quality testing of distance-based molecular descriptors for benzenoid hydrocarbons, J. Mol. Struct. 1222 (2020), pp. 128927. doi:10.1016/j.molstruc.2020.128927.
  • M. Chamua, J. Buragohain, A. Bharali, and M.E. Nazari, Predictive ability of neighborhood degree sum-based topological indices of polycyclic aromatic hydrocarbons, J. Mol. Struct. 1270 (2022), pp. 133904. doi:10.1016/j.molstruc.2022.133904.
  • P. Sarkar, N. De, and A. Pal, On some topological indices and their importance in chemical sciences: A comparative study, Eur. Phys. J. Plus. 137 (2022), pp. 195. doi:10.1140/epjp/s13360-022-02431-1.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, Comb. Sci. 22 (2003), pp. 69–77. doi:10.1002/qsar.200390007.
  • K. Roy, Advances in QSAR Modeling: Applications in Pharmaceutical, Chemical, Food, Agricultural and Environmental Sciences, Springer, Cham, Switzerland, 2017.
  • X. Zhang, M.K. Siddiqui, S. Javed, L. Sherin, F. Kausar, and M.H. Muhammad, Physical analysis of heat for formation and entropy of Ceria oxide using topological indices, Comb. Chem. High Throughput Screen. 25 (2022), pp. 441–450. doi:10.2174/1386207323999201001210832.
  • S.A.K. Kirmani, P. Ali, and F. Azam, Topological indices and QSPR/QSAR analysis of some antiviral drugs being investigated for the treatment of COVID-19 patients, Int. J. Quantum Chem. 121 (2021), pp. e26594. doi:10.1002/qua.26594.
  • K. Roy, S. Kar, and R.N. Das, QSAR/QSPR modeling: Introduction, Springer Briefs in Mol. Sci. (2015), pp. 1–36.
  • F. Abedin, B. Roughton, P. Spencer, Q. Ye, and K. Camarda, Computational molecular design of water compatible dentin adhesive system, Int. Symp. Process. Syst. Eng. 37 (2015), pp. 2081–2086.
  • Z. Raza, The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains, Heliyon 6 (2020), pp. 44–59. doi:10.1016/j.heliyon.2020.e04479.
  • X. Zhang, X. Wu, S. Akhter, M. Jamil, J.B. Liu, and M. Farahani, Edge-versionatom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs, Symmetry 10 (2018), pp. 751–786. doi:10.3390/sym10120751.
  • I. Gutman, S.J. Cyvina, and V. Ivanov-Petrović, Topological properties of circumcoronenes, Z. Naturforsch. A. 53 (1998), pp. 699–70. doi:10.1515/zna-1998-0810.
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, Analytical expressions for topological properties of polycyclic benzenoid networks, J. Chemom. 30 (2016), pp. 682–697.
  • P. Liu, Y. Li, S.M. Sarathy, and W.L. Roberts, Gas-to-liquid phase transition of PAH at flame temperatures, J. Phys. Chem. A. 124 (2020), pp. 3896–3903. doi:10.1021/acs.jpca.0c01912.
  • M. Piao, S. Chu, M. Zheng, and X. Xu, Characterization of the combustion products of polyethylene, Chemosphere 39 (1999), pp. 1497–1512. doi:10.1016/S0045-6535(99)00054-5.
  • G. Grimmer and H. Böhnke, Polycyclic aromatic hydrocarbon profile analysis of high-protein foods, oils, and fats by gas chromatography, J. Ass. Offic. Anal. Chem. 58 (1975), pp. 725–733.
  • S.V. Kurbatova, E.E. Finkelshtein, E.A. Kolosova, A.V. Kartashev, and S.N. Yashkin, Structural analogy method in studies of adamantanes, J. Struct. Chem. 45 (2004), pp. 144–150. doi:10.1023/B:JORY.0000041513.82837.4e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.