327
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, biological evaluation and in silico studies of novel thiadiazole-hydrazone derivatives for carbonic anhydrase inhibitory and anticancer activities

, , , , , , , , , & show all
Pages 543-567 | Received 01 Apr 2023, Accepted 05 Jul 2023, Published online: 04 Aug 2023

References

  • M. Tapera, H. Kekeçmuhammed, B. Tüzün, E. Sarıpınar, Ü.M. Koçyiğit, E. Yıldırım, M. Doğan, and Y. Zorlu, Synthesis, carbonic anhydrase inhibitory activity, anticancer activity and molecular docking studies of new imidazolyl hydrazone derivatives, J. Mol. Struct. 1269 (2022), pp. 133816. doi:10.1016/j.molstruc.2022.133816.
  • S. Bilginer, S.K. Bardaweel, Y. Demir, I. Gulcin, and C. Kazaz, Synthesis, cytotoxicities, and carbonic anhydrase inhibition activities of pyrazoline–benzenesulfonamide derivatives harboring phenol/polyphenol moieties, Med. Chem. Res. 31 (2022), pp. 925–935. doi:10.1007/s00044-022-02893-z.
  • V. Chahal and R. Kakkar, A combination strategy of structure-based virtual screening, MM-GBSA, cross docking, molecular dynamics and metadynamics simulations used to investigate natural compounds as potent and specific inhibitors of tumor linked human carbonic anhydrase IX, J. Biomol. Struct. Dyn. 41 (2023), pp. 5465–5480. doi:10.1080/07391102.2022.2087736.
  • H.O. Tawfik, M.A. Shaldam, A. Nocentini, R. Salem, H. Almahli, S.T. Al-Rashood, C.T. Supuran, and W.M. Eldehna, Novel 3-(6-methylpyridin-2-yl) coumarin-based chalcones as selective inhibitors of cancer-related carbonic anhydrases IX and XII endowed with anti-proliferative activity, J. Enz. Inhib. Med. Chem. 37 (2022), pp. 1043–1052. doi:10.1080/14756366.2022.2056734.
  • H.O. Tawfik, A. Belal, M.A. Abourehab, A. Angeli, A. Bonardi, C.T. Supuran, and M.H. El-Hamamsy, Dependence on linkers’ flexibility designed for benzenesulfonamides targeting discovery of novel hCA IX inhibitors as potent anticancer agents, J. Enz. Inhib. Med. Chem. 37 (2022), pp. 2765–2785. doi:10.1080/14756366.2022.2130285.
  • A. Bonardi, S. Bua, J. Combs, C. Lomelino, J. Andring, S.M. Osman, A. Toti, L.D.C. Mannelli, P. Gratterib, C. Lomelinoc, R. McKenna, A. Nocentini, and C.T. Supuran, The three-tails approach as a new strategy to improve selectivity of action of sulphonamide inhibitors against tumour-associated carbonic anhydrase IX and XII, J. Enz. Inhib. Med. Chem. 37 (2022), pp. 930–939. doi:10.1080/14756366.2022.2053526.
  • A.I. Zain-Alabdeen, T.F. El-Moselhy, N. Sharafeldin, A. Angeli, C.T. Supuran, and M.H. El-Hamamsy, Synthesis and anticancer activity of new benzensulfonamides incorporating s-triazines as cyclic linkers for inhibition of carbonic anhydrase IX, Sci. Rep. 12 (2022), pp. 16756. doi:10.1038/s41598-022-21024-7.
  • A. Kumar, K. Siwach, C.T. Supuran, and P.K. Sharma, A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors, Bioorg. Chem. 126 (2022), pp. 105920. doi:10.1016/j.bioorg.2022.105920.
  • G. Arrighi, A. Puerta, A. Petrini, F.J. Hicke, A. Nocentini, M.X. Fernandes, J.M. Patron, C.T. Supuran, J.G. Fernández-Bolaños, and Ó. López, Squaramide-tethered sulfonamides and coumarins: Synthesis, inhibition of tumor-associated cas ix and xii and docking simulations, Int. J. Mol. Sci. 23 (2022), pp. 7685.
  • H.O. Tawfik, A. Petreni, C.T. Supuran, and M.H. El-Hamamsy, Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach, Eur. J. Med. Chem. 232 (2022), pp. 114190. doi:10.1016/j.ejmech.2022.114190.
  • T. Al-Warhi, M.M. Elbadawi, A. Bonardi, A. Nocentini, A.A. Al-Karmalawy, N. Aljaeed, O.J. Alotaibi, H.A. Abdel-Aziz, C.T. Supuran, and W.M. Eldehna, Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII, J. Enz. Inhib. Med. Chem. 37 (2022), pp. 2635–2643. doi:10.1080/14756366.2022.2124409.
  • L. Micheli, L. Testai, A. Angeli, D. Carrino, A. Pacini, F. Margiotta, L. Flori, C.T. Supuran, V. Calderone, C. Ghelardini, and L.D.C. Mannelli, Inhibitors of mitochondrial human carbonic anhydrases VA and VB as a therapeutic strategy against paclitaxel-induced neuropathic pain in mice, Int. J. Mol. Sci. 23 (2022), pp. 6229. doi:10.3390/ijms23116229.
  • D.M. Elimam, W.M. Eldehna, R. Salem, A. Bonardi, A. Nocentini, S.T. Al-Rashood, M.M. Elaasser, P. Gratteri, C.T. Supuran, and H.A. Allam, Natural inspired ligustrazine-based SLC-0111 analogues as novel carbonic anhydrase inhibitors, Eur. J. Med. Chem. 228 (2022), pp. 114008. doi:10.1016/j.ejmech.2021.114008.
  • B.D. Vanjare, N.G. Choi, Y.S. Eom, H. Raza, M. Hassan, K.H. Lee, and S.J. Kim, Synthesis, carbonic anhydrase inhibition, anticancer activity, and molecular docking studies of 1,3,4-oxadiazole derivatives, Mol. Divers. 27 (2023), pp. 193–208. doi:10.1007/s11030-022-10416-6.
  • Ö. Güleç, C. Türkeş, M. Arslan, Y. Demir, Y. Yeni, A. Hacımüftüoğlu, E. Ereminsoy, Ö.İ. Küfrevioğlu, and Ş. Beydemir, Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1, 3, 4-oxadiazol structural motif, Mol. Divers. 26 (2022), pp. 2825–2845. doi:10.1007/s11030-022-10422-8.
  • N. Chu, Y. Wang, H. Jia, J. Han, X. Wang, and Z. Hou, Design, Synthesis and biological evaluation of new carbohydrate-based coumarin derivatives as selective carbonic anhydrase ix inhibitors via “click” reaction, Molecules 27 (2022), pp. 5464. doi:10.3390/molecules27175464.
  • M.A. Abdelgawad, S.N. Bukhari, A. Musa, M. Elmowafy, M.H. Elkomy, A.A. Nayl, A.H. El-Ghorab, I.O. Althobaiti, H.A. Altaleb, H. Omar, A.H. Abdelazeem, M.A. Zaki, M.E. Shaker, and H.A.H. Elshemy, New sulfamethoxazole derivatives as selective carbonic anhydrase ix and xii inhibitors: Design, synthesis, cytotoxic activity and molecular modeling, Pharm. 15 (2022), pp. 1134.
  • B. Zengin Kurt, G. Celebi, D. Ozturk Civelek, A. Angeli, A. Akdemir, F. Sonmez, and C.T. Supuran, Tail-approach-based design and synthesis of coumarin-monoterpenes as carbonic anhydrase inhibitors and anticancer agents, ACS Omega 8 (2023), pp. 5787–5807. doi:10.1021/acsomega.2c07459.
  • S. Bondock, T. Albarqi, T. Nasr, N.M. Mohamed, and M.M. Abdou, Design, synthesis, cytotoxic evaluation and molecular docking of novel 1,3,4-thiadiazole sulfonamides with azene and coumarin moieties as carbonic anhydrase inhibitors, Arab. J. Chem. 16 (2023), pp. 104956. doi:10.1016/j.arabjc.2023.104956.
  • J. Yang, D.L. Chen, P.C. Wang, B. Yang, and C.Z. Gao, NIR phosphorescent cyclometalated platinum (II) complexes with CAIX targeted and nuclear penetration as potent anticancer theragnostic agents, Eur. J. Med. Chem. 243 (2022), pp. 114702. doi:10.1016/j.ejmech.2022.114702.
  • A. Elkamhawy, J. Woo, H. Nada, A. Angeli, T.M. Bedair, C.T. Supuran, and K. Lee, Identification of novel and potent indole-based benzenesulfonamides as selective human carbonic anhydrase ii inhibitors: Design, synthesis, in vitro, and in silico studies, Int. J. Mol. Sci. 23 (2022), pp. 2540. doi:10.3390/ijms23052540.
  • H.T. Abdel‐Mohsen, M.A. Omar, A. Petreni, and C.T. Supuran, Novel benzenesulfonamide‐thiouracil conjugates with a flexible N‐ethyl acetamide linker as selective CA IX and CA XII inhibitors, Arch. Pharm. 356 (2023), pp. 2200434. doi:10.1002/ardp.202200434.
  • H. Nada, A. Elkamhawy, M.H. Abdellattif, A. Angeli, C.H. Lee, C.T. Supuran, and K. Lee, 4-anilinoquinazoline-based benzenesulfonamides as nanomolar inhibitors of carbonic anhydrase isoforms I, II, IX, and XII: Design, synthesis, in-vitro, and in-silico biological studies, J. Enzyme Inhib. Med. Chem. 37 (2022), pp. 994–1004. doi:10.1080/14756366.2022.2055553.
  • S. Janowska, D. Khylyuk, A. Gornowicz, A. Bielawska, M. Janowski, R. Czarnomysy, K. Bielawski, and M. Wujec, Synthesis and anticancer activity of 1, 3, 4-thiadiazoles with 3-methoxyphenyl substituent, Molecules 27 (2022), pp. 6977. doi:10.3390/molecules27206977.
  • S. Janowska, D. Khylyuk, A. Bielawska, A. Szymanowska, A. Gornowicz, K. Bielawski, J. Noworól, S. Mandziuk, and M. Wujec, New 1,3,4-thiadiazole derivatives with anticancer activity, Molecules (2022), pp. 1814. doi:10.3390/molecules27061814.
  • S.A. Ibrahim, M.M. Salem, H.A. Abd Elsalam, and A.A. Noser, Design, synthesis, in-silico and biological evaluation of novel 2-amino-1, 3, 4-thiadiazole based hydrides as B-cell lymphoma-2 inhibitors with potential anticancer effects, J. Mol. Struct. 1268 (2022), pp. 133673. doi:10.1016/j.molstruc.2022.133673.
  • M. Vilková, M. Hudáčová, N. Palušeková, R. Jendželovský, M. Almáši, T. Béres, P. Fedoročko, and M. Kožurková, Acridine based n-acylhydrazone derivatives as potential anticancer agents: Synthesis, characterization and ctdna/hsa spectroscopic binding properties, Molecules 27 (2022), pp. 2883. doi:10.3390/molecules27092883.
  • Y. Demir, F.S. Tokalı, E. Kalay, C. Türkeş, P. Tokalı, O.N. Aslan, K. Şendil, and Ş. Beydemir, Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors, Mol. Divers. (2022), pp. 1–21. doi:10.1007/s11030-022-10526-1.
  • S. Al Bitar and H. Gali-Muhtasib, The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting cancer: Molecular mechanisms and novel therapeutics, Cancers 11 (2019), pp. 1475. doi:10.3390/cancers11101475.
  • A. Işık, U.A. Çevik, I. Çelik, H.E. Bostancı, A. Karayel, G. Gündoğdu, U. İnce, A. Koçak, Y. Özkay, and Z.A. Kaplancıklı, Benzimidazole-hydrazone derivatives: Synthesis, in vitro anticancer, antimicrobial, antioxidant activities, in silico DFT and ADMET studies, J. Mol. Struct. 1270 (2022), pp. 133946. doi:10.1016/j.molstruc.2022.133946.
  • F. Sozmen, M. Kucukoflaz, M. Ergul, Z.D.S. Inan, Y. Bozkurt, and D. Taydas, Synthesis of multifunctional organic nanoparticles combining photodynamic therapy and chemotherapeutic drug release, Macromol. Res. 30 (2022), pp. 61–69. doi:10.1007/s13233-022-0021-0.
  • N. Valkova, F. Lépine, L. Labrie, M. Dupont, and R. Beaudet, Purification and characterization of prba, a new esterase from Enterobacter cloacae hydrolyzing the esters of 4-hydroxybenzoic acid (parabens), J. Biol. Chem. 278 (2003), pp. 12779–12785. doi:10.1074/jbc.M213281200.
  • E. Henke and U. Bornscheuer, Esterases from Bacillus subtilis and B. stearothermophilus share high sequence homology but differ substantially in their properties, Appl. Microbiol. Biotechnol. 60 (2002), pp. 320–326. doi:10.1007/s00253-002-1126-1.
  • B.E.O. Bedir, E. Terzi, and O.O. Guler, Differential in vitro effects of oncogenic pathway inhibitors on carbonic anhydrase-IX, xanthine oxidase, and catalase in colorectal cancer, Int. J. Med. Biochem. 6 (2023), pp. 36–41.
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, E.C. Meng, G.S. Couch, T.I. Croll, J.H. Morris, and T.E. Ferrin, UCSF ChimeraX: Structure visualization for researchers, educators, and developers, Protein Sci. 30 (2021), pp. 70–82. doi:10.1002/pro.3943.
  • P.R. Yadav, S.H. Basha, and P.K. Pindi, Role of Thr199 residue in human β-carbonic anhydrase-II pH-dependent activity elucidated by microsecond simulation analysis, J. Biomol. Struct. Dyn. 40 (2022), pp. 5016–5025. doi:10.1080/07391102.2020.1865203.
  • J. Leitans, A. Kazaks, A. Balode, J. Ivanova, R. Zalubovskis, C.T. Supuran, and K. Tars, Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX, J. Med. Chem. 58 (2015), pp. 9004–9009. doi:10.1021/acs.jmedchem.5b01343.
  • A. Daina, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017), pp. 42717. doi:10.1038/srep42717.
  • B.Y. Peng, A.K. Singh, C.H. Chan, Y.H. Deng, P.Y. Li, C.W. Su, C.Y. Wu, and W.P. Deng, AGA induces sub-G1 cell cycle arrest and apoptosis in human colon cancer cells through p53-independent/p53-dependent pathway, BMC Cancer 23 (2023), pp. 1–13. doi:10.1186/s12885-022-10466-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.