235
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning-based models for accessing thermal conductivity of liquids at different temperature conditions

, &
Pages 605-617 | Received 21 Jun 2023, Accepted 29 Jul 2023, Published online: 29 Aug 2023

References

  • J.J. Healy, J.J. de Groot, and J. Kestin, The theory of the transient hot-wire method for measuring thermal conductivity, Physica B+C 82 (1976), pp. 392–408. doi:10.1016/0378-4363(76)90203-5.
  • Y. Nagasaka and A. Nagashima, Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot-wire method, Rev. Sci. Instrum. 52 (1981), pp. 229–232. doi:10.1063/1.1136577.
  • G. Oudebrouckx, T. Vandenryt, S. Bormans, P.H. Wagner, and R. Thoelen, Measuring thermal conductivity in a microfluidic device with the transient thermal offset (TTO) method, IEEE Sens. J. 21 (2021), pp. 7298–7307. doi:10.1109/JSEN.2020.3047475.
  • R. Moreno Jimenez, B. Creton, C. Marliere, L. Teule-Gay, O. Nguyen, and S. Marre, A microfluidic strategy for accessing the thermal conductivity of liquids at different temperatures, Microchem. J. 193 (2023), pp. 109030. doi:10.1016/j.microc.2023.109030.
  • X.-Q. Guo, C.-Y. Sun, S.-X. Rong, G.-J. Chen, and T.-M. Guo, Equation of state analog correlations for the viscosity and thermal conductivity of hydrocarbons and reservoir fluids, J. Pet. Sci. Eng. 30 (2001), pp. 15–27. doi:10.1016/S0920-4105(01)00098-5.
  • S. Khosharay, K. Khosharay, G. Di Nicola, and M. Pierantozzi, Modelling investigation on the thermal conductivity of pure liquid, vapour, and supercritical refrigerants and their mixtures by using Heyen EOS, Phys. Chem. Liq. 56 (2017), pp. 124–140. doi:10.1080/00319104.2017.1306859.
  • L.F. Cardona, L.A. Forero, and J.A. Velásquez, A group contribution method to model the thermal conductivity of pure substances, Fluid Ph. Equilibria 564 (2023), pp. 113592. doi:10.1016/j.fluid.2022.113592.
  • W.A. Malatesta and B. Yang, Aviation turbine fuel thermal conductivity: A predictive approach using entropy scaling-guided machine learning with experimental validation, ACS omega 6 (2021), pp. 28579–28586. doi:10.1021/acsomega.1c02934.
  • H. Lu, W. Liu, F. Yang, H. Zhou, F. Liu, H. Yuan, G. Chen, and Y. Jiao, Thermal conductivity estimation of diverse liquid aliphatic oxygen-containing organic compounds using the quantitative structure-property relationship method, ACS omega 5 (2020), pp. 8534–8542. doi:10.1021/acsomega.9b04190.
  • B. Creton, Chemoinformatics at IFP Energies Nouvelles: Applications in the fields of energy, transport, and environment, Mol. Inf. 36 (2017), pp. 1700028. doi:10.1002/minf.201700028.
  • C. Hall, B. Creton, B. Rauch, U. Bauder, and M. Aigner, Probabilistic mean quantitative structure–property relationship modeling of jet fuel properties, Energy Fuels 36 (2022), pp. 463–479. doi:10.1021/acs.energyfuels.1c03334.
  • C. Nieto-Draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau, J.-C. de Hemptinne, P. Ungerer, B. Rousseau, and C. Adamo, A general guidebook for the theoretical prediction of physicochemical properties of chemicals for regulatory purposes, Chem. Rev. 115 (2015), pp. 13093–13164. doi:10.1021/acs.chemrev.5b00215.
  • A.R. Katritzky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, I. Kahn, and D.A. Dobchev, Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction, Chem. Rev. 110 (2010), pp. 5714–5789. doi:10.1021/cr900238d.
  • J.C. Bloxham, M.E. Redd, N.F. Giles, T.A. Knotts, and W.V. Wilding, Proper use of the DIPPR 801 database for creation of models, methods, and processes, J. Chem. Eng. Data 66 (2021), pp. 3–10. doi:10.1021/acs.jced.0c00641.
  • R.L. Rowley, W.V. Wilding, A. Congote, and N.F. Giles, The use of database influence factors to maintain currency in an evaluated chemical database, Int. J. Thermophys. 31 (2010), pp. 860–874. doi:10.1007/s10765-010-0706-z.
  • D.F. Ilten, DETHERM: Thermophysical property data for the optimization of heat-transfer equipment, J. Chem. Inf. Comput. Sci. 31 (1991), pp. 160–167. doi:10.1021/ci00001a029.
  • D.T. Jamieson, Thermal conductivity of liquids, J. Chem. Eng. Data 24 (1979), pp. 244–246. doi:10.1021/je60082a037.
  • N. Villanueva, B. Flaconnèche, and B. Creton, Prediction of alternative gasoline sorption in a semicrystalline Poly(Ethylene), ACS Comb. Sci. 17 (2015), pp. 631–640. doi:10.1021/acscombsci.5b00094.
  • D.A. Saldana, B. Creton, P. Mougin, N. Jeuland, B. Rousseau, and L. Starck, Rational formulation of alternative fuels using QSPR methods: Application to jet fuels, Oil Gas Sci. Technol. – Rev. IFP Energ. Nouv. 68 (2012), pp. 651–662. doi:10.2516/ogst/2012034.
  • B. Creton, B. Veyrat, and M.-H. Klopffer, Fuel sorption into polymers: Experimental and machine learning studies, Fluid Ph. Equilibria 556 (2022), pp. 113403. doi:10.1016/j.fluid.2022.113403.
  • D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, L. Pidol, N. Jeuland, and B. Creton, Flash point and cetane number predictions for fuel compounds using quantitative structure property relationship (QSPR) methods, Energy Fuels 25 (2011), pp. 3900–3908. doi:10.1021/ef200795j.
  • RDKit: Open-source cheminformatics software, Accessed in 2023. http://www.rdkit.org/.
  • SMARTS - a language for describing molecular patterns; daylight chemical information systems inc.: Laguna niguel, ca, Accessed in 2023. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2006), pp. 694–701. doi:10.1002/qsar.200610151.
  • E.N. Muratov, E.V. Varlamova, A.G. Artemenko, P.G. Polishchuk, and V.E. Kuz’min, Existing and developing approaches for QSAR analysis of mixtures, Mol. Inf. 31 (2011), pp. 202–221. doi:10.1002/minf.201100129.
  • D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, and B. Creton, On the rational formulation of alternative fuels: Melting point and net heat of combustion predictions for fuel compounds using machine learning methods, SAR QSAR Environ. Res. 24 (2013), pp. 259–277. doi:10.1080/1062936X.2013.766634.
  • C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 1–27. doi:10.1145/1961189.1961199.
  • L.M. Hiot, Y.S. Ong, Y. Tenne, and C.-K. Goh, Computational Intelligence in Expensive Optimization Problems, Adaptation, learning, and optimization Vol. 2, Springer, Berlin, Heidelberg, 2010.
  • P. Gantzer, B. Creton, and C. Nieto-Draghi, Comparisons of molecular structure generation methods based on fragment assemblies and genetic graphs, J. Chem. Inf. Model. 61 (2021), pp. 4245–4258. doi:10.1021/acs.jcim.1c00803.
  • D. Sinoquet, H. Langouët, and S. Da Veiga, A new spring for geoscience: EAGE conference and exhibition, Barcelona 14–17 June 2010, 72, Conference Proceedings & Exhibitors’ Catalogue, DB Houten, NL, 2010.
  • L.I.-K. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics 45 (1989), p. 255. doi:10.2307/2532051.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, N. Ferrando, and B. Creton, Prediction of density and viscosity of biofuel compounds using machine learning methods, Energy Fuels 26 (2012), pp. 2416–2426. doi:10.1021/ef3001339.
  • L. Riedel, Thermal Conductivity of Liquids (in German), Mitt. Kaltetech. Inst. Karlsruhe 2 1948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.