180
Views
2
CrossRef citations to date
0
Altmetric
Research Article

3D-QSAR-based design, synthesis and biological evaluation of 2,4-disubstituted quinoline derivatives as antimalarial agents

, , , , &
Pages 639-659 | Received 15 Jun 2023, Accepted 08 Aug 2023, Published online: 31 Aug 2023

References

  • S. Sato, Plasmodium—A brief introduction to the parasites causing human malaria and their basic biology, J. Physiol. Anthropol. 40 (2021), pp. 1–13. doi:10.1186/s40101-020-00251-9.
  • Y. Xie, K. Wu, W. Cheng, T. Jiang, Y. Yao, M. Xu, Y. Yang, H. Tan, and J. Li, Molecular epidemiological surveillance of Africa and Asia imported malaria in Wuhan, Central China: Comparison of diagnostic tools during 2011–2018, Malar. J. 19 (2020), pp. 1–14. doi:10.1186/s12936-020-03387-2.
  • E.A. Winzeler, Malaria research in the post-genomic era, Nature 455 (2008), pp. 751–756. doi:10.1038/nature07361.
  • F.G. Tadesse, L. Meerstein-Kessel, B.P. Gonçalves, C. Drakeley, L. Ranford-Cartwright, and T. Bousema, Gametocyte sex ratio: The key to understanding Plasmodium falciparum transmission?, Trends Parasitol. 35 (2019), pp. 226–238. doi:10.1016/j.pt.2018.12.001.
  • G. Geleta and T. Ketema, Severe malaria associated with Plasmodium falciparum and P. vivax among children in Pawe hospital, Northwest Ethiopia, Malar. Res. Treat. 2016 (2016), pp. 1240962. doi:10.1155/2016/1240962.
  • S. March, S. Ng, S. Velmurugan, A. Galstian, J. Shan, D.J. Logan, A.E. Carpenter, D. Thomas, B.K.L. Sim, M.M. Mota, S.L. Hoffman, and S.N. Bhatia, A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax, Cell Host Microbe 14 (2013), pp. 104–115. doi:10.1016/j.chom.2013.06.005.
  • I. Mueller, P.A. Zimmerman, and J.C. Reeder, Plasmodium malariae and Plasmodium ovale–the ‘bashful’malaria parasites, Trends Parasitol. 23 (2007), pp. 278–283. doi:10.1016/j.pt.2007.04.009.
  • World Malaria Report 2022, Geneva World Health Organization, 2022.
  • V.K. Vyas, S. Bhati, S. Patel, and M. Ghate, Structure-and ligand-based drug design methods for the modeling of antimalarial agents: A review of updates from 2012 onwards, J. Biomol. Struct. Dyn. 40 (2021), pp. 10481–10506. doi:10.1080/07391102.2021.1932598.
  • R.E. Sinden, The biology of malaria transmission, Recent Adv. Malaria (2016), pp. 87–124.
  • E.G. Tse, M. Korsik, and M.H. Todd, The past, present and future of anti-malarial medicines, Malar. J. 18 (2019), pp. 93. doi:10.1186/s12936-019-2724-z.
  • M. Zhou, A. Varol, and T. Efferth, Multi-omics approaches to improve malaria therapy, Pharmacol. Res. 167 (2021), pp. 105570. doi:10.1016/j.phrs.2021.105570.
  • Y.-Q. Hu, C. Gao, S. Zhang, L. Xu, Z. Xu, L.-S. Feng, X. Wu, and F. Zhao, Quinoline hybrids and their antiplasmodial and antimalarial activities, Eur. J. Med. Chem. 139 (2017), pp. 22–47. doi:10.1016/j.ejmech.2017.07.061.
  • T. Herraiz, H. Guillén, D. González-Peña, and V.J. Arán, Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases, Sci. Rep. 9 (2019), pp. 15398. doi:10.1038/s41598-019-51604-z.
  • S. Kapishnikov, T. Staalsø, Y. Yang, J. Lee, A.J. Pérez-Berná, E. Pereiro, Y. Yang, S. Werner, P. Guttmann, L. Leiserowitz, and J. Als-Nielsen, Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo, Proc. Natl. Acad. Sci. U. S. A. 116 (2019), pp. 22946–22952. doi:10.1073/pnas.1910123116.
  • A.C.C. Aguiar, M. Panciera, E.F. Simao Dos Santos, M.K. Singh, M.L. Garcia, G.E. De Souza, M. Nakabashi, J.L. Costa, C.R.S. Garcia, G. Oliva, C.R.D. Correia, and R.V.C. Guido, Discovery of marinoquinolines as potent and fast-acting Plasmodium falciparum inhibitors with in vivo activity, J. Med. Chem. 61 (2018), pp. 5547–5568. doi:10.1021/acs.jmedchem.8b00143.
  • M.S. Tople, N.B. Patel, P.P. Patel, A.C. Purohit, I. Ahmad, and H. Patel, An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases, J. Mol. Struct. 1271 (2023), pp. 134016. doi:10.1016/j.molstruc.2022.134016.
  • G. Qureshi, P. Gediya, P. Gehlot, M. Ghate, and V.K. Vyas, 3D-QSAR assisted design, synthesis and pharmacological evaluation of novel substituted benzamides as procaspase-3 activators and anticancer agents, J. Mol. Struct. 1286 (2023), pp. 135464. doi:10.1016/j.molstruc.2023.135464.
  • X. Hou, X. Chen, M. Zhang, and A. Yan, QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 101–124. doi:10.1080/1062936X.2015.1134652.
  • V.K. Vyas, G. Qureshi, D. Oza, H. Patel, K. Parmar, P. Patel, and M.D. Ghate, Synthesis of 2-,4,-6-, and/or 7-substituted quinoline derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents: 3D QSAR-assisted design, Bioorganic Med. Chem. Lett. 29 (2019), pp. 917–922. doi:10.1016/j.bmcl.2019.01.038.
  • R.M. Cross, A. Monastyrskyi, T.S. Mutka, J.N. Burrows, D.E. Kyle, and R. Manetsch, Endochin optimization: Structure-activity and structure-property relationship studies of 3-substituted 2-Methyl-4(1 H)-quinolones with antimalarial activity, J. Med. Chem. 53 (2010), pp. 7076–7094. doi:10.1021/jm1007903.
  • R.M. Cross, N.K. Namelikonda, T.S. Mutka, L. Luong, D.E. Kyle, and R. Manetsch, Synthesis, antimalarial activity, and structure-activity relationship of 7-(2-Phenoxyethoxy)-4(1H)-quinolones, J. Med. Chem. 54 (2011), pp. 8321–8327. doi:10.1021/jm200718m.
  • R.M. Cross, J.R. Maignan, T.S. Mutka, L. Luong, J. Sargent, D.E. Kyle, and R. Manetsch, Optimization of 1,2,3,4-tetrahydroacridin-9(10 H)-ones as antimalarials utilizing structure-activity and structure-property relationships, J. Med. Chem. 54 (2011), pp. 4399–4426. doi:10.1021/jm200015a.
  • K. Roy, S. Kar, and R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Academic press, London, UK, 2015.
  • R.D. Cramer III, J.D. Bunce, D.E. Patterson, and I.E. Frank, Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies, Quant. Struct. Relat. 7 (1988), pp. 18–25. doi:10.1002/qsar.19880070105.
  • S.S.R. Alsayed, S. Lun, G. Luna, C.C. Beh, A.D. Payne, N. Foster, W.R. Bishai, and H. Gunosewoyo, Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents, RSC Adv. 10 (2020), pp. 7523–7540. doi:10.1039/C9RA10663D.
  • H. Wang, K. Wen, L. Wang, Y. Xiang, X. Xu, Y. Shen, and Z. Sun, Large-scale solvent-free chlorination of hydroxy-pyrimidines, -pyridines, -pyrazines and -amides using equimolar POCl3, Molecules 17 (2012), pp. 4533–4544. doi:10.3390/molecules17044533.
  • B.J. Kotecki, D.P. Fernando, A.R. Haight, and K.A. Lukin, A general method for the synthesis of unsymmetrically substituted ureas via palladium-catalyzed amidation, Org. Lett. 11 (2009), pp. 947–950. doi:10.1021/ol802931m.
  • A.A. Hassan, N.K. Mohamed, A.A. Aly, H.N. Tawfeek, S. Bräse, and M. Nieger, Synthesis and structure confirmation of 2,4-disubstituted thiazole and 2,3,4-trisubstituted thiazole as thiazolium bromide salts, Monatshefte Für Chemie - Chem. Mon. 151 (2020), pp. 1143–1152. doi:10.1007/s00706-020-02640-3.
  • H. Dayani, A. Jha, M. Ghate, and V.K. Vyas, Synthesis and in vitro evaluation of substituted quinolines as new apoptosis inducers and anticancer agents: Pharmacophore-based design, Lett. Drug Des. Discov. 18 (2021), pp. 1050–1060. doi:10.2174/1570180818666210706105347.
  • A.B. Isah, Y.K.E. Ibrahim, and E.O. Iwalewa, Evaluation of the antimalarial properties and standardization of tablets of Azadirachta indica (Meliaceae) in mice, Phyther. Res. 17 (2003), pp. 807–810. doi:10.1002/ptr.1231.
  • V.K. Vyas, G. Qureshi, M. Ghate, H. Patel, and S. Dalai, Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity, SAR QSAR Environ. Res. 27 (2016), pp. 427–440. doi:10.1080/1062936X.2016.1189959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.