87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pteridine reductase (PTR1): initial structure-activity relationships studies of potential leishmanicidal arylindole derivatives compounds

, , , &
Pages 661-687 | Received 07 Jun 2023, Accepted 08 Jul 2023, Published online: 22 Aug 2023

References

  • R.W. Ashford, P. Desjeux, and P. Deraadt, Estimation of population at risk of infection and number of cases of leishmaniasis, Parasitol. Today 8 (2022), pp. 104–105. doi:10.1016/0169-4758(92)90249-2.
  • S. Burza, S.L. Croft, and M. Boelaert, Leishmaniasis, The Lancet 392 (2018), pp. 951–970. doi:10.1016/S0140-6736(18)31204-2.
  • J. Ruiz-Esmenjaud, E. Torres-Guerrero, M.R. Quintanilla-Cedillo, and J. Ruiz-Esmenjaud, Leishmaniasis: A review, F1000Res. 6 (2017), pp. 750. doi:10.12688/f1000research.11120.1.
  • Interregional meeting on leishmaniasis among neighbouring endemic countries in the Eastern Mediterranean, African and European regions. Available athttps://www.who.int/publications/i/item/WHO-EM-CTD-081-E.
  • Manual de vigilância e controle da leishmaniose visceral. Available at https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_controle_leishmaniose_visceral_1edicao.pdf.
  • Manual de vigilância da leishmaniose tegumentar. Available at https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_leishmaniose_tegumentar.pdf.
  • L. Anversa, M.G.S. Tiburcio, V.B. Richini-Pereira, and L.E. Ramirez, Human leishmaniasis in Brazil: A general review, Rev. Assoc. Med. Bras. 64 (2018), pp. 281–289. doi:10.1590/1806-9282.64.03.281.
  • N.K. Copeland and N.E. Aronson, Leishmaniasis: Treatment updates and clinical practice guidelines review, Curr. Opin. Infect. Dis. 28 (2015), pp. 426–437. doi:10.1097/QCO.0000000000000194.
  • B.S. Mcgwire and A.R. Satoskar, Leishmaniasis: Clinical syndromes and treatment, QMJ 107 (2014), pp. 7–14. doi:10.1093/qjmed/hct116.
  • T.L. Blundell, Structure-based drug design, Nature 384 (1996), pp. 23–26.
  • L.G. Ferreira, R.N. dos Santos, G. Oliva, and A.D. Andricopulo, Molecular docking and structure-based drug design strategies, Molecules 20 (2015), pp. 13384–13421. doi:10.3390/molecules200713384.
  • B. Zulfiqar, T.B. Shelper, and V.M. Avery, Leishmaniasis drug discovery: Recent progress and challenges in assay development, Drug. Discov. Today 22 (2017), pp. 1516–1531. doi:10.1016/j.drudis.2017.06.004.
  • D. Gourley, A. Schüttelkopf, G. Leonard, J. Luba, L. Hardy, S. Beverley, and W.N. Hunter, Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites, Nat. Struct. Biol. 8 (2001), pp. 521–525. doi:10.1038/88584.
  • A. Gaulton, A. Hersey, M. Nowotka, A. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L.J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman, A. Karlsson, M.P. Magariños, J.P. Overington, G. Papadatos, I. Smit, and A.R. Leach, The ChEMBL database in 2017, Nucleic. Acids. Res. 45 (2017), pp. D945–D954. doi:10.1093/nar/gkw1074.
  • S. Lal and T.J. Snape, Send orders of reprints at [email protected] 2-arylindoles: A privileged molecular scaffold with potent, broad-ranging pharma-cological activity, Curr. Med. Chem. 19 (2012), pp. 4828–4837. doi:10.2174/092986712803341449.
  • G. Landi, P. Linciano, G. Tassone, M. Costi, S. Mangani, and C. Pozzi, High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor, Acta Crystallogr. D Struct. Biol. 76 (2020), pp. 558–564. doi:10.1107/S2059798320004891.
  • B. Nare, L. Hardy, and S. Beverley, The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major, J. Biol. Chem. 272 (1997), pp. 13883–13891. doi:10.1074/jbc.272.21.13883.
  • A. Schüttelkopf, L. Hardy, S. Beverley, and W. Hunter, Structures of Leishmania major pteridine reductase complexes reveal the active site features important for ligand binding and to guide inhibitor design, J. Mol. Biol. 352 (2005), pp. 105–116. doi:10.1016/j.jmb.2005.06.076.
  • M. Taha, I. Uddin, M. Gollapalli, N. Almandil, F. Rahim, R.K. Farooq, M. Nawaz, M. Ibrahim, M.A. Alqahtani, Y.A. Bamarouf, and M. Selvaraj, Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives, BMC Chem.13 (2019), pp. 102. doi:10.1186/s13065-019-0617-4.
  • Protein Data Bank, PDB, Available at https://www.rcsb.org.
  • EMBL’s European bioinformatics institute (EMBL-EBI), PROCHECK; software available at https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/.
  • H. Ong, N. Sienkiewicz, S. Wyllie, and A. Fairlamb, Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major, J. Biol. Chem. 286 (2011), pp. 10429–10438. doi:10.1074/jbc.M110.209593.
  • L. Tulloch, V. Martini, J. Iulek, J. Huggan, J. Lee, C. Gibson, C.L. Gibson, T.K. Smith, C.J. Suckling, and W.N. Hunter, Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases, J. Med. Chem. 53 (2010), pp. 221–229. doi:10.1021/jm901059x.
  • Accelrys Software Inc, Discovery studio 2019; software available at https://discover.3ds.com/discovery-studio-visualizer-download.
  • PerkinElmer, ChemDraw 17.0; software available at https://revvitysignals.com/products/research/chemdraw.
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, UCSF 1.15 chimera; software available at https://www.cgl.ucsf.edu/chimera/download.html.
  • WaveFunction, Inc, Spartan; software available at https://www.wavefun.com/spartan.
  • G. Jones, P. Willett, R.C. Glen, A.R. Leach, and R. Taylor, GOLD 5.7.0; software available at https://www.ccdc.cam.ac.uk/solutions/software/gold/.
  • P. Bauer, B. Hess, and E. Lindahl, GROMACS (version 2022.4); software available at https://www.gromacs.org/Downloads.
  • D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, AmberTools22; software available at https://ambermd.org/GetAmber.php.
  • M.S. Valdés-Tresanco, M.E. Valdés-Tresanco, P.A. Valiente, and E. Moreno, Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS, J. Chem. Theory. Comput. 17 (2021), pp. 6281–6291. doi:10.1021/acs.jctc.1c00645.
  • M. Valdés-Tresanco, M. Valdés-Tresanco, E. Moreno, and P. Valiente, Assessment of different parameters on the accuracy of computational alanine scanning of protein-protein complexes with the molecular mechanics/generalized born surface area method, J. Phys. Chem. B 127 (2023), pp. 944–954. doi:10.1021/acs.jpcb.2c07079.
  • I.A. Guedes, C.S. de Magalhães, and L.E. Dardenne, Receptor-ligand molecular docking, Biophys. Rev. 6 (2014), pp. 75–87. doi:10.1007/s12551-013-0130-2.
  • G.L. Warren, C.W. Andrews, A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lambert, M. Lindvall, N. Nevins, S.F. Semus, S. Senger, G. Tedesco, I.D. Wall, J.M. Woolven, C.E. Peishoff, and M.S. Head, A critical assessment of docking programs and scoring functions, J. Med. Chem. 49 (2006), pp. 5912–5931. doi:10.1021/jm050362n.
  • E.J. Barreiro, A.E. Kümmerle, and C.A.M. Fraga, The methylation effect in medicinal chemistry, Chem. Rev. 111 (2011), pp. 5215–5246. doi:10.1021/cr200060g.
  • H. Schönherr and T. Cernak, Profound methyl effects in drug discovery and a call for new C-H methylation reactions, Angew. Chem. Int. Ed. Engl. 52 (2013), pp. 12256–12267. doi:10.1002/anie.201303207.
  • Q. Zhao, J. Qu, and F. He, Chlorination: An effective strategy for high-performance organic solar cells, Adv. Sci. (Weinh) 7 (2020), pp. 2000509. doi:10.1002/advs.202000509.
  • J.C. Biffinger, H.W. Kim, and S.G. DiMagno, The polar hydrophobicity of fluorinated compounds, Chembiochem 5 (2004), pp. 622–627. doi:10.1002/cbic.200300910.
  • V.H. Dalvi and P.J. Rossky, Molecular origins of fluorocarbon hydrophobicity, Proc. Natl. Acad. Sci. U.S.A 107 (2010), pp. 13603–13607. doi:10.1073/pnas.0915169107.
  • M. Pouzet, M. Dubois, K. Charlet, and A. Béakou, From hydrophilic to hydrophobic wood using direct fluorination: A localized treatment, C. R. Chim. 21 (2018), pp. 800–807. doi:10.1016/j.crci.2018.03.009.
  • D.K. Blumenthal, X. Cheng, M. Fajer, K.Y. Ho, J. Rohrer, O. Gerlits, P. Taylor, P. Juneja, A. Kovalevsky, and Z. Radic, Covalent inhibition of hAChE by organophosphates causes homodimer dissociation through long-range allosteric effects, J. Biol. Chem. 297 (2021), pp. 101007. doi:10.1016/j.jbc.2021.101007.
  • S. Brogi, R. Ibba, S. Rossi, S. Butini, V. Calderone, S. Gemma, and G. Campiani, Covalent reversible inhibitors of cysteine proteases containing the nitrile warhead: Recent advancement in the field of viral and parasitic diseases, Molecules 27 (2022), pp. 2561. doi:10.3390/molecules27082561.
  • L. Cole, N. Chu, J. Kilpatrick, J. Volanakis, S. Narayana, and Y. Babu, Structure of diisopropyl fluorophosphate-inhibited factor D, Acta Crystallogr. D Biol. Crystallogr. 53 (1997), pp. 143–150. doi:10.1107/S0907444996012991.
  • A. Lodola, D. Callegari, L. Scalvini, S. Rivara, and M. Mor, Design and SAR analysis of covalent inhibitors driven by hybrid QM/MM simulations, Meth. Mol. Biol. 2114 (2020), pp. 307–337.
  • S. Ngo, T. Nguyen, N. Tung, and B. Mai, Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M pro, RSC Adv. 12 (2022), pp. 3729–3737. doi:10.1039/D1RA08752E.
  • J. Dutta, D. Sahoo, S. Jena, K. Tulsiyan, and H. Biswal, Non-covalent interactions with inverted carbon: A carbo-hydrogen bond or a new type of hydrogen bond?, Phys. Chem. Chem. Phys. 22 (2020), pp. 8988–8997. doi:10.1039/D0CP00330A.
  • L. Lima and E. Barreiro, Bioisosterism: A useful strategy for molecular modification and drug design, Curr. Med. Chem. 12 (2005), pp. 23–49. doi:10.2174/0929867053363540.
  • G.L. Patrick, An Introduction to Medicinal Chemistry, 5th ed., Oxford University Press, USA, 2015.
  • G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, and D. Cao, Admetlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic. Acids Res. 49 (2021), pp. W5–W14. doi:10.1093/nar/gkab255.
  • S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E.E. Bolton, Pubchem 2023 update, Nucleic. Acids. Res. 51 (2023), pp. D1373–D1380. doi:10.1093/nar/gkac956.
  • M. Davies, M. Nowotka, G. Papadatos, N. Dedman, A. Gaulton, F. Atkinson, L. Bellis, and J.P. Overington, Chembl web services: Streamlining access to drug discovery data and utilities, Nucleic. Acids Res. 43 (2015), pp. W612–620. doi:10.1093/nar/gkv352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.